-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmaterialParameters.m
107 lines (105 loc) · 6.86 KB
/
materialParameters.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Material parameters for beyond-CMOS devices
% all in SI units, m, s, J
% Title: materialParameters.m
% Author: Dmitri E Nikonov
% Date: 03/22/2014
% (C) Dmitri E. Nikonov 2014
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fundcon
cop.hbar = hbar;
cop.eelec = eelec;
cop.eps0 = eps0;
cop.epsSiO2 = 3.9; % Si dioxide dielectric constant
cop.Rquant = 2*pi*hbar/eelec/eelec; % quantum resistance, Ohm
cop.vF = 8e5; % particle velocity in graphene, m/s
cop.rho = 1.9e-8; % copper resitivity, Ohm*m
cop.F = 15e-9; % metal half-pitch, m %Technology node
cop.Lch = 12.8e-9; % channel length
cop.EOTdiel = 0.68e-9; % real equivalent oxide thickness
cop.EOT = 1.08e-9; % electrical equivalent oxide thickness, m
cop.gatearea = 1.5; % area overhead for the gate factor
cop.bitarea = 1.5; % areaoverhead for the bit
cop.adderarea = 1.5; % extra area between bits
cop.elecwidth = 4; % factor of transistor width
cop.spinwidth = 1; % factor of spintronic device width
cop.pitch = 4*cop.F; % pitch of metal 1
cop.lic = 5*cop.pitch; % typical length of an electrical interconnect
cop.licsp = 5*cop.pitch; % typical length of a spin spin interconnect
cop.parasitC = 1.5; % cap w. parasitics re. cap of the gate
cop.Cgaar = eps0*cop.epsSiO2/cop.EOT; % gate capacitance, F/m^2
cop.Cgale = cop.Cgaar*cop.Lch; % gate capacitance, F/m
cop.Ctole = cop.Cgale*(cop.parasitC+1); % parasitics adjusted gate capacitance, F/m
cop.Rcont = 1.6e-4; % contact resistance, either source or drain, Ohm*m, NOT included in the I-V
cop.Rtunn = 1e-3; % tunneling resistance (between two layers of graphene), Ohm*m
cop.epsILD = 2; % interlayer dielectric constant
cop.Cicle = CapWire(2*cop.F,4*cop.F,2*cop.F,4*cop.F,cop.epsILD);
% interconnect capacitance per unit length, F/m
cop.Cic = cop.lic*cop.Cicle; % interconnect capacitance per logic gate, F
cop.Jg = 1e5; % ga2
cop.Ileak = 0.1; % S to D leakage current in CMOS HP, A/m
cop.adderorder = 32; % how many bits in an adder
% empirical factors for delay and energy in transistor-like circuits
cop.factic = 0.7; % from S. Rakhedja paper, =0.7 interconnect cap
cop.facEcap = 0.5; % normal capacitor 1/2
cop.factinv = 0.9; % from spice
cop.facEinv = 1.4; % from spice
cop.factnan = 2.0; % from spice
cop.facEnan = 2.0; % from spice
% piezoelectrric FET parameters
cop.epspiezo = 9; % dielectric constant of AlN
cop.thpiezo = 1e-9; % thickness of AlN
cop.Cpiezo = eps0*cop.epspiezo/cop.thpiezo; % capacitance of pite leakage current density, A/m^ezo
% ferroelectric FET parameters (corr to PZT)
cop.Pfe = 0.1; % polarization of a ferroelectric, C/m^2
cop.Ecfe = 7e6; % coercive field in a ferroelectric, V/m
cop.thfe = 5e-9; % tickness of a ferroelectric, m
cop.epsfe = 250; % dielectric constant of a ferroelectric
cop.Cfear = eps0*cop.epsfe/cop.thfe;% ferroelectric linear capacitance, F/m^2
cop.tPZint = 1e-11; % incomplete polarization intrinsic switching time, and piezoelectric
cop.tFEint = 3e-11; % ferroelectric intrinsic full polarization switching time
% magnetic parameters
cop.majsize = 1; % adjustment to majority gate size, trivial =1
cop.Msat = 1e6; % saturation magnetization, A/m
cop.Mspe = 3e5; % saturation magnetization perpendicular, A/m
cop.sppol = 0.7; % spin polarization for injected current
cop.alpha = 0.01; % Gilbert damping
cop.thFM = 2e-9; % thickness of a ferromagnet, m
cop.RAfm = 5e-12; % magnetic tunnel junction resistancew*area, Ohm*m^2
cop.TMR = 2; % magnetoresistance factor
cop.Bk = 4.0; % anisotropy magnetic field, T=kg/C/s
cop.Ku = cop.Mspe*cop.Bk/2; % net perpendicular anisotropy, J/m^3
cop.gLande = 2; % Lande factor for electrons
cop.Bneed = 0.01; % empirical magnetic field, T. needd to clock NML
cop.mmag = 4; % magnetic permeability
cop.Jdw = 1.4e11; % domain wall critical current density, A/m^2
cop.Rwiring = 300; % resistance of the power and ground networks for spintronics, Ohm
cop.RAspinvalve = 3e-14; % resistance*area of a spin valve, Ohm*m^2
cop.Dcu = 5.2e-3; % diffusion coefficient in a copper wire, m^2/s
% spin Hall effect
cop.SHEC = 0.3; % spin Hall effect coefficient for tungsten=W
cop.thSH = 2e-9; % thickness of the spin Hall metal, m
cop.rhoSH = 5.3e-8; % tungsten resistivity, Ohm*m
% multiferroic switching BiFeO3 and CoFe
cop.Elecmf = 1.3e7; % critical field in multiferroic, V/m
cop.epsmf = 54; % dielectric constant in multiferroic
cop.Pmf = 0.55; % multiferroic saturation polarization, C/m^2
cop.Bmf = 0.03; % multiferroic exchange field, T, assumed fulfilled
cop.thmf = 1e-8; % thickness of multiferroic, m
% magnetostrictive switching PMN-PT and CoFe
cop.Elecms = 2e5; % critical field in piezoelectric, V/m
cop.epsms = 1000; % dielectric constant in piezoelectric
cop.Pms = 0.3; % piezoelectric saturation polarization, C/m^2
cop.Bms = 0.01; % magnetostrictive effective field, T
cop.thms = 3e-8; % thickness of piezoelectric, m
% magnetoelectric switching Cr2O3 and CoFe
cop.Elecme = 2.6e6; % magnetoelectric critical field, V/m
cop.epsme = 13; % dielectric constant in the magnetoelectric
cop.Bme = 0.009; % magnetoelectric effective field, T,
% normalized to ferromagnet thickness of 2nm, surface effect
cop.thme = 1e-8; % thickness of magnetoelectric, m
% surface anisotropy switching MgO and CoFe
cop.Elecsu = 2.6e8; % piezoelectric critical field, V/m
cop.epssu = 9.5; % dielectric constant in piezoelectric
cop.Bsu = 0.04; % magnetostrictive effective field, T
cop.thsu = 1.5e-9; % thickness of MgO layer, m