-
Notifications
You must be signed in to change notification settings - Fork 3
/
trainval_distributed.py
349 lines (292 loc) · 13.2 KB
/
trainval_distributed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
from asyncio.log import logger
from io import TextIOWrapper
from typing import Iterator
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from torch.optim.lr_scheduler import MultiStepLR
from torchvision.transforms import ToTensor, Normalize, Compose, ColorJitter
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.distributed as dist
from tqdm import tqdm
from lib.loss import *
from net.backbone.resnet50_clip import ResNet50_CLIP
from lib.gen_pseudo_mask import ResNet50_CLIP as ResNet50_CLIP_Seg
from net.detector import CSP
from lib.optimize import adjust_learning_rate
from config import Config
from dataloader.loader import *
from utils.functions import parse_det_offset
from eval_city.eval_script.eval_demo import validate
import datetime
import json
import os
import time
from time import strftime, localtime
import argparse
import pdb
def parse():
parser = argparse.ArgumentParser()
MODEL_DIR = 'output/'+strftime("%y%m%d-%H%M", localtime())
parser.add_argument('--work-dir', type=str, default=MODEL_DIR, help='the dir to save logs and models')
parser.add_argument ('--local_rank', type=int, default=0)
args = parser.parse_args()
if args.local_rank == 0 and not os.path.exists(MODEL_DIR): os.mkdir(MODEL_DIR)
return args
def fix_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def main():
cfg = Config()
args = parse()
local_rank = args.local_rank
torch.cuda.set_device(local_rank)
dist.init_process_group(backend='nccl', init_method='env://')
device = torch.device('cuda:{}'.format(local_rank))
if cfg.gen_seed:
cur_seed = torch.Tensor([random.randint(0, 2000)]).cuda()
dist.broadcast(cur_seed, src=0)
cfg.seed = int(cur_seed.cpu().tolist()[0])
fix_seed(cfg.seed)
net = CSP(cfg).to(device)
center = loss_cls().to(device)
height = loss_reg().to(device)
offset = loss_offset().to(device)
pseudo_score = loss_pseudo_score().to(device)
proto_contrast = loss_proto_contrast(cfg).to(device)
if cfg.score_map:
seg_model = ResNet50_CLIP_Seg(cfg).to(device)
else:
seg_model = None
optimizer = optim.Adam(net.parameters(), lr=cfg.init_lr)
args.start_epoch = 0
if cfg.teacher:
teacher_dict = net.state_dict()
else:
teacher_dict = None
net = DDP(net, find_unused_parameters=True)
if cfg.score_map:
seg_model = DDP(seg_model)
# dataset
gpus = eval(os.environ['CUDA_VISIBLE_DEVICES'])
if isinstance(gpus, int):
num_gpus = 1
else:
num_gpus = len(gpus)
batchsize = cfg.onegpu
args.epoch_length = int(cfg.iter_per_epoch / (num_gpus*batchsize))
traindataset = CityPersons(path=cfg.root_path, type='train', config=cfg)
datasampler = DistributedSampler(dataset = traindataset)
trainloader = DataLoader(traindataset, sampler=datasampler, batch_size=batchsize, shuffle=False, num_workers=10)
if cfg.val and local_rank==0:
testdataset = CityPersons(path=cfg.root_path, type='val', config=cfg)
testloader = DataLoader(testdataset, batch_size=1, num_workers=4)
cfg.ckpt_path = args.work_dir
cfg.gpu_nums = num_gpus
if local_rank == 0:
cfg.print_conf()
print('Training start')
if not os.path.exists(cfg.ckpt_path):
os.mkdir(cfg.ckpt_path)
# open log file
time_date = datetime.datetime.now()
time_log = '{}{}{}_{}{}'.format(time_date.year, time_date.month, time_date.day,
time_date.hour, time_date.minute)
log_file = os.path.join(cfg.ckpt_path, time_log + '.log')
log = open(log_file, 'w')
cfg.write_conf(log)
else:
log = None
if cfg.add_epoch != 0:
cfg.num_epochs = args.start_epoch + cfg.add_epoch
args.iter_num = args.epoch_length*cfg.num_epochs
args.best_loss = np.Inf
args.best_loss_epoch = 0
args.best_mr = 100
args.best_mr_epoch = 0
args.iter_cur = 0
for epoch in range(args.start_epoch, cfg.num_epochs):
datasampler.set_epoch(epoch)
if local_rank == 0:
print('----------')
print('Epoch %d begin' % ((epoch + 1)))
epoch_loss = train(trainloader, net, seg_model, criterion, center, height, offset, pseudo_score, proto_contrast, optimizer, epoch, cfg, args, local_rank, log, teacher_dict=teacher_dict)
if local_rank == 0:
if cfg.val and (epoch + 1) >= cfg.val_begin and (epoch + 1) % cfg.val_frequency == 0:
cur_mr = val(testloader, net, cfg, args, epoch, teacher_dict=teacher_dict)
if cur_mr[0] < args.best_mr:
args.best_mr = cur_mr[0]
args.best_mr_epoch = epoch + 1
cur_log = 'Epoch %d has lowest MR: %.7f' % (args.best_mr_epoch, args.best_mr)
print(cur_log)
log.write(cur_log+'\n')
log.write('Val: epoch_num: %d loss: %.7f Summerize: [Reasonable: %.2f%%], [Reasonable_small: %.2f%%], [Reasonable_occ=heavy: %.2f%%], [All: %.2f%%], lr: %.6f\n'
% (epoch+1, epoch_loss, cur_mr[0]*100, cur_mr[1]*100, cur_mr[2]*100, cur_mr[3]*100, args.lr))
log.flush()
if epoch+1 >= cfg.save_begin - 1 and epoch+1 <= cfg.save_end:
print('Save checkpoint...')
filename = cfg.ckpt_path + '/%s-%d.pth' % (net.module.__class__.__name__, epoch+1)
checkpoint = {
'epoch': epoch+1,
'optimizer': optimizer.state_dict(),
}
if cfg.teacher:
checkpoint['model'] = teacher_dict
else:
checkpoint['model'] = net.module.state_dict()
torch.save(checkpoint, filename)
cur_log = '%s saved.' % filename
print(cur_log)
log.write(cur_log+'\n')
log.flush()
if local_rank == 0:
log.write('Epoch %d has lowest MR: %.7f' % (args.best_mr_epoch, args.best_mr))
log.close()
print('End of training!')
def train(trainloader, net: DDP, seg_model: DDP, criterion, center, height, offset, pseudo_score, proto_contrast, optimizer, epoch, config: Config, args, local_rank, log:TextIOWrapper, teacher_dict=None):
if local_rank == 0:
t1 = time.time()
t3 = time.time()
epoch_loss = 0.0
total_loss_log, loss_cls_log, loss_reg_log, loss_offset_log, loss_pseudo_score_log, loss_proto_contrast_log, time_batch = 0, 0, 0, 0 ,0, 0, 0
net.train()
for i, data in enumerate(trainloader):
adjust_learning_rate(optimizer, epoch, config, args)
args.lr = optimizer.param_groups[0]['lr']
args.iter_cur += 1
inputs, labels = data
inputs: torch.Tensor = inputs.cuda().float()
labels: Iterator[torch.Tensor] = [l.cuda().float() for l in labels]
if config.score_map:
seg_model.eval()
with torch.no_grad():
score_map = seg_model(inputs)
score_map: torch.Tensor = score_map.float()
pseudo_map: torch.Tensor = F.interpolate(score_map,
size=list(map(lambda x: x//(config.down * 2 ** 2), config.size_train)),
mode='bilinear', align_corners=True)
else:
pseudo_map = None
# zero the parameter gradients
optimizer.zero_grad()
# heat map
outputs = net(inputs)
# loss
cls_loss, reg_loss, off_loss, pseudo_score_loss, proto_contrast_loss = criterion(outputs, labels, center, height, offset, pseudo_score, pseudo_map, proto_contrast, config)
if config.score_map:
loss = cls_loss + reg_loss + off_loss + config.seg_lambda * pseudo_score_loss + config.contrast_lambda * proto_contrast_loss
else:
loss = cls_loss + reg_loss + off_loss
loss.backward()
# update param
optimizer.step()
if config.teacher:
for k, v in net.module.state_dict().items():
if k.find('num_batches_tracked') == -1:
teacher_dict[k] = config.alpha * teacher_dict[k] + (1 - config.alpha) * v
else:
teacher_dict[k] = 1 * v
# print statistics
batch_loss = loss.item()
batch_cls_loss = cls_loss.item()
batch_reg_loss = reg_loss.item()
batch_off_loss = off_loss.item()
batch_pseudo_score_loss = pseudo_score_loss.item()
batch_proto_contrast_loss = proto_contrast_loss.item()
total_loss_log += batch_loss
loss_cls_log += batch_cls_loss
loss_reg_log += batch_reg_loss
loss_offset_log += batch_off_loss
loss_pseudo_score_log += batch_pseudo_score_loss
loss_proto_contrast_log += batch_proto_contrast_loss
epoch_loss += batch_loss
if (i+1) % config.log_freq == 0 and local_rank == 0:
t4 = time.time()
time_batch += (t4-t3)
ETA_time = (args.iter_num-args.iter_cur) * (time_batch/config.log_freq)
m ,s = divmod(ETA_time, 60)
h, m = divmod(m, 60)
cur_log = '[Epoch %d/%d, Batch %d/%d]$ <Total loss: %.6f> cls: %.6f, reg: %.6f, off: %.6f, ps: %.6f, pc: %.6f, Time: %.3f, lr:%.6f, ETA: %d:%02d:%02d' %\
(epoch + 1, config.num_epochs, i + 1,
args.epoch_length,total_loss_log/config.log_freq, loss_cls_log/config.log_freq, loss_reg_log/config.log_freq, loss_offset_log/config.log_freq,
loss_pseudo_score_log * config.seg_lambda * 100 /config.log_freq,
loss_proto_contrast_log/config.log_freq, time_batch/config.log_freq, args.lr, h, m , s)
print('\r'+cur_log, end='')
log.write(cur_log+'\n')
log.flush()
total_loss_log, loss_cls_log, loss_reg_log, loss_offset_log, loss_pseudo_score_log, loss_proto_contrast_log, time_batch = 0, 0, 0, 0 ,0, 0, 0
t3 = time.time()
if i+1 == args.epoch_length:
epoch_loss /= args.epoch_length
if epoch_loss < args.best_loss:
args.best_loss = epoch_loss
args.best_loss_epoch = epoch + 1
if local_rank == 0:
t2 = time.time()
cur_log = 'Epoch %d end, AvgLoss is %.6f, Time used %.1fsec.' % (epoch+1, epoch_loss, int(t2-t1))
print('\r'+cur_log)
log.write(cur_log+'\n')
cur_log = 'Epoch %d has lowest loss: %.7f' % (args.best_loss_epoch, args.best_loss)
print('\r'+cur_log)
log.write(cur_log+'\n')
log.flush()
break
return epoch_loss
def val(testloader, net, config: Config, args, epoch, teacher_dict=None):
net.eval()
if config.teacher:
print('Load teacher params')
student_dict = net.module.state_dict()
net.module.load_state_dict(teacher_dict)
print('Perform validation...')
res = []
t3 = time.time()
for i, data in enumerate(testloader):
inputs = data.cuda()
with torch.no_grad():
results = net(inputs, is_train=False)
pos, height, offset = results[:3]
boxes = parse_det_offset(pos.cpu().numpy(), height.cpu().numpy(), offset.cpu().numpy(), config.size_test, score=0.1, down=4, nms_thresh=0.5)
if len(boxes) > 0:
boxes[:, [2, 3]] -= boxes[:, [0, 1]]
for box in boxes:
temp = dict()
temp['image_id'] = i+1
temp['category_id'] = 1
temp['bbox'] = box[:4].tolist()
temp['score'] = float(box[4])
res.append(temp)
print('\r%d/%d' % (i + 1, len(testloader)),end='')
sys.stdout.flush()
if config.teacher:
print('\nLoad back student params')
net.module.load_state_dict(student_dict)
temp_val = os.path.join(config.ckpt_path, f'VLPD-{epoch+1}.json')
with open(temp_val, 'w') as f:
json.dump(res, f)
MRs = validate('./eval_city/val_gt.json', temp_val)
t4 = time.time()
print('Summerize: [Reasonable: %.2f%%], [Reasonable_small: %.2f%%], [Reasonable_occ=heavy: %.2f%%], [All: %.2f%%]'
% (MRs[0]*100, MRs[1]*100, MRs[2]*100, MRs[3]*100))
print('Validation time used: %.3f' % (t4 - t3))
return MRs
def criterion(output, label, center, height, offset, pseudo_score, pseudo_map, proto_contrast, config: Config):
cls_loss = center(output[0], label[0])
reg_loss = height(output[1], label[1])
off_loss = offset(output[2], label[2])
if config.score_map:
pseudo_score_loss = pseudo_score(output[3], pseudo_map)
else:
pseudo_score_loss = torch.Tensor([0.0]).cuda()
if len(output) >= 5:
proto_contrast_loss = proto_contrast(output[4], label[0], output[3])
else:
proto_contrast_loss = torch.Tensor([0.0]).cuda()
return cls_loss, reg_loss, off_loss, pseudo_score_loss, proto_contrast_loss
if __name__ == '__main__':
main()