From 762968b667da08ce302af7b0f38719f50cce57b2 Mon Sep 17 00:00:00 2001 From: AmosLewis Date: Thu, 12 Oct 2023 19:45:18 +0000 Subject: [PATCH] Update llvm-project to b44b3494f60296db6aca38a14cab061d9b747a0a --- externals/llvm-project | 2 +- lib/RefBackend/CMakeLists.txt | 1 + test/Conversion/TorchToTosa/basic.mlir | 128 +++++++++--------- ...orch-backend-to-tosa-backend-pipeline.mlir | 24 ++-- 4 files changed, 81 insertions(+), 74 deletions(-) diff --git a/externals/llvm-project b/externals/llvm-project index d13da154a7c7e..b44b3494f6029 160000 --- a/externals/llvm-project +++ b/externals/llvm-project @@ -1 +1 @@ -Subproject commit d13da154a7c7eff77df8686b2de1cfdfa7cc7029 +Subproject commit b44b3494f60296db6aca38a14cab061d9b747a0a diff --git a/lib/RefBackend/CMakeLists.txt b/lib/RefBackend/CMakeLists.txt index 2ef5dab3ae8d0..a8ed0439d8156 100644 --- a/lib/RefBackend/CMakeLists.txt +++ b/lib/RefBackend/CMakeLists.txt @@ -15,6 +15,7 @@ add_mlir_library(TorchMLIRRefBackend MLIRIR MLIRTransforms MLIRMathTransforms + MLIRLinalgTransforms ) mlir_check_all_link_libraries(TorchMLIRRefBackend) diff --git a/test/Conversion/TorchToTosa/basic.mlir b/test/Conversion/TorchToTosa/basic.mlir index 49907a98a56df..939fd4bde9cdb 100644 --- a/test/Conversion/TorchToTosa/basic.mlir +++ b/test/Conversion/TorchToTosa/basic.mlir @@ -41,16 +41,16 @@ func.func @torch.aten.relu$basic(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vte // ----- // CHECK-LABEL: func.func @torch.aten.leaky_relu$basic( -// CHECK-SAME: %[[ARG_0:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { -// CHECK: %[[VAL_0:.*]] = torch_c.to_builtin_tensor %[[ARG_0]] : !torch.vtensor<[?,?],f32> -> tensor -// CHECK: %[[VAL_1:.*]] = torch.constant.float 1.000000e-01 -// CHECK: %[[VAL_2:.*]] = "tosa.const"() <{value = dense<1.000000e-01> : tensor}> : () -> tensor -// CHECK: %[[VAL_3:.*]] = "tosa.const"() <{value = dense<0.000000e+00> : tensor}> : () -> tensor -// CHECK: %[[VAL_4:.*]] = tosa.greater_equal %[[VAL_0]], %[[VAL_3]] : (tensor, tensor) -> tensor -// CHECK: %[[VAL_5:.*]] = tosa.mul %[[VAL_0]], %[[VAL_2]] {shift = 0 : i32} : (tensor, tensor) -> tensor -// CHECK: %[[VAL_6:.*]] = tosa.select %[[VAL_4]], %[[VAL_0]], %[[VAL_5]] : (tensor, tensor, tensor) -> tensor -// CHECK: %[[VAL_7:.*]] = torch_c.from_builtin_tensor %[[VAL_6]] : tensor -> !torch.vtensor<[?,?],f32> -// CHECK: return %[[VAL_7]] : !torch.vtensor<[?,?],f32> +// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { +// CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[?,?],f32> -> tensor +// CHECK: %[[VAL_2:.*]] = torch.constant.float 1.000000e-01 +// CHECK: %[[VAL_3:.*]] = "tosa.const"() <{value = dense<1.000000e-01> : tensor}> : () -> tensor +// CHECK: %[[VAL_4:.*]] = "tosa.const"() <{value = dense<0.000000e+00> : tensor}> : () -> tensor +// CHECK: %[[VAL_5:.*]] = tosa.greater_equal %[[VAL_1]], %[[VAL_4]] : (tensor, tensor) -> tensor +// CHECK: %[[VAL_6:.*]] = tosa.mul %[[VAL_1]], %[[VAL_3]] {shift = 0 : i8} : (tensor, tensor) -> tensor +// CHECK: %[[VAL_7:.*]] = tosa.select %[[VAL_5]], %[[VAL_1]], %[[VAL_6]] : (tensor, tensor, tensor) -> tensor +// CHECK: %[[VAL_8:.*]] = torch_c.from_builtin_tensor %[[VAL_7]] : tensor -> !torch.vtensor<[?,?],f32> +// CHECK: return %[[VAL_8]] : !torch.vtensor<[?,?],f32> // CHECK: } func.func @torch.aten.leaky_relu$basic(%arg0: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { %fp0 = torch.constant.float 1.000000e-01 @@ -155,13 +155,13 @@ func.func @torch.aten.reciprocal$basic(%arg0: !torch.vtensor<[?,?],f32>) -> !tor // ----- // CHECK-LABEL: func.func @torch.aten.add$basic( -// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?],f32>, -// CHECK-SAME: %[[VAL_1:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { +// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?],f32>, +// CHECK-SAME: %[[VAL_1:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { // CHECK: %[[VAL_2:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[VAL_3:.*]] = torch_c.to_builtin_tensor %[[VAL_1]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[VAL_4:.*]] = torch.constant.int 1 // CHECK: %[[VAL_5:.*]] = "tosa.const"() <{value = dense<1.000000e+00> : tensor}> : () -> tensor -// CHECK: %[[VAL_6:.*]] = tosa.mul %[[VAL_3]], %[[VAL_5]] {shift = 0 : i32} : (tensor, tensor) -> tensor +// CHECK: %[[VAL_6:.*]] = tosa.mul %[[VAL_3]], %[[VAL_5]] {shift = 0 : i8} : (tensor, tensor) -> tensor // CHECK: %[[VAL_7:.*]] = tosa.add %[[VAL_2]], %[[VAL_6]] : (tensor, tensor) -> tensor // CHECK: %[[VAL_8:.*]] = torch_c.from_builtin_tensor %[[VAL_7]] : tensor -> !torch.vtensor<[?,?],f32> // CHECK: return %[[VAL_8]] : !torch.vtensor<[?,?],f32> @@ -175,13 +175,13 @@ func.func @torch.aten.add$basic(%arg0: !torch.vtensor<[?, ?],f32>, %arg1: !torch // ----- // CHECK-LABEL: func.func @torch.aten.sub$basic( -// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?],f32>, -// CHECK-SAME: %[[VAL_1:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { +// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?],f32>, +// CHECK-SAME: %[[VAL_1:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { // CHECK: %[[VAL_2:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[VAL_3:.*]] = torch_c.to_builtin_tensor %[[VAL_1]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[VAL_4:.*]] = torch.constant.int 1 // CHECK: %[[VAL_5:.*]] = "tosa.const"() <{value = dense<1.000000e+00> : tensor}> : () -> tensor -// CHECK: %[[VAL_6:.*]] = tosa.mul %[[VAL_3]], %[[VAL_5]] {shift = 0 : i32} : (tensor, tensor) -> tensor +// CHECK: %[[VAL_6:.*]] = tosa.mul %[[VAL_3]], %[[VAL_5]] {shift = 0 : i8} : (tensor, tensor) -> tensor // CHECK: %[[VAL_7:.*]] = tosa.sub %[[VAL_2]], %[[VAL_6]] : (tensor, tensor) -> tensor // CHECK: %[[VAL_8:.*]] = torch_c.from_builtin_tensor %[[VAL_7]] : tensor -> !torch.vtensor<[?,?],f32> // CHECK: return %[[VAL_8]] : !torch.vtensor<[?,?],f32> @@ -195,13 +195,14 @@ func.func @torch.aten.sub$basic(%arg0: !torch.vtensor<[?, ?],f32>, %arg1: !torch // ----- // CHECK-LABEL: func.func @torch.aten.mul$basic( -// CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[?,?],f32>, -// CHECK-SAME: %[[ARG1:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { -// CHECK: %[[ARG0_BUILTIN:.*]] = torch_c.to_builtin_tensor %[[ARG0]] : !torch.vtensor<[?,?],f32> -> tensor -// CHECK: %[[ARG1_BUILTIN:.*]] = torch_c.to_builtin_tensor %[[ARG1]] : !torch.vtensor<[?,?],f32> -> tensor -// CHECK: %[[RESULT_BUILTIN:.*]] = tosa.mul %[[ARG0_BUILTIN]], %[[ARG1_BUILTIN]] {shift = 0 : i32} : (tensor, tensor) -> tensor -// CHECK: %[[RESULT:.*]] = torch_c.from_builtin_tensor %[[RESULT_BUILTIN]] : tensor -> !torch.vtensor<[?,?],f32> -// CHECK: return %[[RESULT]] : !torch.vtensor<[?,?],f32> +// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?],f32>, +// CHECK-SAME: %[[VAL_1:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { +// CHECK: %[[VAL_2:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[?,?],f32> -> tensor +// CHECK: %[[VAL_3:.*]] = torch_c.to_builtin_tensor %[[VAL_1]] : !torch.vtensor<[?,?],f32> -> tensor +// CHECK: %[[VAL_4:.*]] = tosa.mul %[[VAL_2]], %[[VAL_3]] {shift = 0 : i8} : (tensor, tensor) -> tensor +// CHECK: %[[VAL_5:.*]] = torch_c.from_builtin_tensor %[[VAL_4]] : tensor -> !torch.vtensor<[?,?],f32> +// CHECK: return %[[VAL_5]] : !torch.vtensor<[?,?],f32> +// CHECK: } func.func @torch.aten.mul$basic(%arg0: !torch.vtensor<[?, ?],f32>, %arg1: !torch.vtensor<[?, ?],f32>) -> !torch.vtensor<[?, ?],f32> { %0 = torch.aten.mul.Tensor %arg0, %arg1 : !torch.vtensor<[?, ?],f32>, !torch.vtensor<[?, ?],f32> -> !torch.vtensor<[?, ?],f32> return %0 : !torch.vtensor<[?, ?],f32> @@ -210,14 +211,15 @@ func.func @torch.aten.mul$basic(%arg0: !torch.vtensor<[?, ?],f32>, %arg1: !torch // ----- // CHECK-LABEL: func.func @torch.aten.div$basic( -// CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[?,?],f32>, -// CHECK-SAME: %[[ARG1:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { -// CHECK: %[[ARG0_BUILTIN:.*]] = torch_c.to_builtin_tensor %[[ARG0]] : !torch.vtensor<[?,?],f32> -> tensor -// CHECK: %[[ARG1_BUILTIN:.*]] = torch_c.to_builtin_tensor %[[ARG1]] : !torch.vtensor<[?,?],f32> -> tensor -// CHECK: %[[RCP:.*]] = tosa.reciprocal %[[ARG1_BUILTIN]] : (tensor) -> tensor -// CHECK: %[[RESULT_BUILTIN:.*]] = tosa.mul %[[ARG0_BUILTIN]], %[[RCP]] {shift = 0 : i32} : (tensor, tensor) -> tensor -// CHECK: %[[RESULT:.*]] = torch_c.from_builtin_tensor %[[RESULT_BUILTIN]] : tensor -> !torch.vtensor<[?,?],f32> -// CHECK: return %[[RESULT]] : !torch.vtensor<[?,?],f32> +// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?],f32>, +// CHECK-SAME: %[[VAL_1:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { +// CHECK: %[[VAL_2:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[?,?],f32> -> tensor +// CHECK: %[[VAL_3:.*]] = torch_c.to_builtin_tensor %[[VAL_1]] : !torch.vtensor<[?,?],f32> -> tensor +// CHECK: %[[VAL_4:.*]] = tosa.reciprocal %[[VAL_3]] : (tensor) -> tensor +// CHECK: %[[VAL_5:.*]] = tosa.mul %[[VAL_2]], %[[VAL_4]] {shift = 0 : i8} : (tensor, tensor) -> tensor +// CHECK: %[[VAL_6:.*]] = torch_c.from_builtin_tensor %[[VAL_5]] : tensor -> !torch.vtensor<[?,?],f32> +// CHECK: return %[[VAL_6]] : !torch.vtensor<[?,?],f32> +// CHECK: } func.func @torch.aten.div$basic(%arg0: !torch.vtensor<[?, ?],f32>, %arg1: !torch.vtensor<[?, ?],f32>) -> !torch.vtensor<[?, ?],f32> { %0 = torch.aten.div.Tensor %arg0, %arg1 : !torch.vtensor<[?, ?],f32>, !torch.vtensor<[?, ?],f32> -> !torch.vtensor<[?, ?],f32> return %0 : !torch.vtensor<[?, ?],f32> @@ -394,13 +396,13 @@ func.func @torch.aten.pow.Tensor_Scalar$basic(%arg0: !torch.vtensor<[?,?],f32>) // ----- // CHECK-LABEL: func.func @torch.aten.rsub.Scalar$basic( -// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { +// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { // CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[VAL_2:.*]] = torch.constant.float 3.123400e+00 // CHECK: %[[VAL_3:.*]] = torch.constant.float 6.432100e+00 // CHECK: %[[VAL_4:.*]] = "tosa.const"() <{value = dense<3.123400e+00> : tensor}> : () -> tensor // CHECK: %[[VAL_5:.*]] = "tosa.const"() <{value = dense<6.432100e+00> : tensor}> : () -> tensor -// CHECK: %[[VAL_6:.*]] = tosa.mul %[[VAL_1]], %[[VAL_5]] {shift = 0 : i32} : (tensor, tensor) -> tensor +// CHECK: %[[VAL_6:.*]] = tosa.mul %[[VAL_1]], %[[VAL_5]] {shift = 0 : i8} : (tensor, tensor) -> tensor // CHECK: %[[VAL_7:.*]] = tosa.sub %[[VAL_4]], %[[VAL_6]] : (tensor, tensor) -> tensor // CHECK: %[[VAL_8:.*]] = torch_c.from_builtin_tensor %[[VAL_7]] : tensor -> !torch.vtensor<[?,?],f32> // CHECK: return %[[VAL_8]] : !torch.vtensor<[?,?],f32> @@ -415,13 +417,13 @@ func.func @torch.aten.rsub.Scalar$basic(%arg0: !torch.vtensor<[?,?],f32>) -> !to // ----- // CHECK-LABEL: func.func @torch.aten.rsub.Scalar$basic( -// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { +// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { // CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[VAL_2:.*]] = torch.constant.float 3.123400e+00 // CHECK: %[[VAL_3:.*]] = torch.constant.int 1 // CHECK: %[[VAL_4:.*]] = "tosa.const"() <{value = dense<3.123400e+00> : tensor}> : () -> tensor // CHECK: %[[VAL_5:.*]] = "tosa.const"() <{value = dense<1.000000e+00> : tensor}> : () -> tensor -// CHECK: %[[VAL_6:.*]] = tosa.mul %[[VAL_1]], %[[VAL_5]] {shift = 0 : i32} : (tensor, tensor) -> tensor +// CHECK: %[[VAL_6:.*]] = tosa.mul %[[VAL_1]], %[[VAL_5]] {shift = 0 : i8} : (tensor, tensor) -> tensor // CHECK: %[[VAL_7:.*]] = tosa.sub %[[VAL_4]], %[[VAL_6]] : (tensor, tensor) -> tensor // CHECK: %[[VAL_8:.*]] = torch_c.from_builtin_tensor %[[VAL_7]] : tensor -> !torch.vtensor<[?,?],f32> // CHECK: return %[[VAL_8]] : !torch.vtensor<[?,?],f32> @@ -502,7 +504,7 @@ func.func @torch.aten.reshape$basic(%arg0: !torch.vtensor<[?,?,?,?],f32>) -> !to // ----- // CHECK-LABEL: func.func @torch.aten.native_batch_norm$basic( -// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[10,4,3],f32>) -> !torch.vtensor<[10,4,3],f32> { +// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[10,4,3],f32>) -> !torch.vtensor<[10,4,3],f32> { // CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[10,4,3],f32> -> tensor<10x4x3xf32> // CHECK: %[[VAL_2:.*]] = "tosa.const"() <{value = dense<[5.000000e-01, 4.000000e-01, 3.000000e-01, 6.000000e-01]> : tensor<4xf32>}> : () -> tensor<4xf32> // CHECK: %[[VAL_3:.*]] = "tosa.const"() <{value = dense<[3.000000e+00, 2.000000e+00, 4.000000e+00, 5.000000e+00]> : tensor<4xf32>}> : () -> tensor<4xf32> @@ -518,8 +520,8 @@ func.func @torch.aten.reshape$basic(%arg0: !torch.vtensor<[?,?,?,?],f32>) -> !to // CHECK: %[[VAL_13:.*]] = tosa.sub %[[VAL_1]], %[[VAL_8]] : (tensor<10x4x3xf32>, tensor<4x1xf32>) -> tensor<10x4x3xf32> // CHECK: %[[VAL_14:.*]] = tosa.add %[[VAL_9]], %[[VAL_12]] : (tensor<4x1xf32>, tensor) -> tensor<4x1xf32> // CHECK: %[[VAL_15:.*]] = tosa.rsqrt %[[VAL_14]] : (tensor<4x1xf32>) -> tensor<4x1xf32> -// CHECK: %[[VAL_16:.*]] = tosa.mul %[[VAL_13]], %[[VAL_15]] {shift = 0 : i32} : (tensor<10x4x3xf32>, tensor<4x1xf32>) -> tensor<10x4x3xf32> -// CHECK: %[[VAL_17:.*]] = tosa.mul %[[VAL_16]], %[[VAL_10]] {shift = 0 : i32} : (tensor<10x4x3xf32>, tensor<4x1xf32>) -> tensor<10x4x3xf32> +// CHECK: %[[VAL_16:.*]] = tosa.mul %[[VAL_13]], %[[VAL_15]] {shift = 0 : i8} : (tensor<10x4x3xf32>, tensor<4x1xf32>) -> tensor<10x4x3xf32> +// CHECK: %[[VAL_17:.*]] = tosa.mul %[[VAL_16]], %[[VAL_10]] {shift = 0 : i8} : (tensor<10x4x3xf32>, tensor<4x1xf32>) -> tensor<10x4x3xf32> // CHECK: %[[VAL_18:.*]] = tosa.add %[[VAL_17]], %[[VAL_11]] : (tensor<10x4x3xf32>, tensor<4x1xf32>) -> tensor<10x4x3xf32> // CHECK: %[[VAL_19:.*]] = torch_c.from_builtin_tensor %[[VAL_18]] : tensor<10x4x3xf32> -> !torch.vtensor<[10,4,3],f32> // CHECK: return %[[VAL_19]] : !torch.vtensor<[10,4,3],f32> @@ -538,7 +540,7 @@ func.func @torch.aten.native_batch_norm$basic(%arg0: !torch.vtensor<[10,4,3],f32 // ----- // CHECK-LABEL: func.func @forward( -// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[10,3,8,9,3,4],f32>) -> !torch.vtensor<[10,3,?,4],f32> { +// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[10,3,8,9,3,4],f32>) -> !torch.vtensor<[10,3,?,4],f32> { // CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[10,3,8,9,3,4],f32> -> tensor<10x3x8x9x3x4xf32> // CHECK: %[[VAL_2:.*]] = torch.constant.int 4 // CHECK: %[[VAL_3:.*]] = torch.constant.int 2 @@ -557,9 +559,9 @@ func.func @forward(%arg0: !torch.vtensor<[10,3,8,9,3,4],f32> ) -> !torch.vtensor // ----- // CHECK-LABEL: func.func @forward( -// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[5,2,2,3],f32>, -// CHECK-SAME: %[[VAL_1:.*]]: !torch.vtensor<[2,2,3],f32>, -// CHECK-SAME: %[[VAL_2:.*]]: !torch.vtensor<[2,2,3],f32>) -> !torch.vtensor<[5,2,2,3],f32> { +// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[5,2,2,3],f32>, +// CHECK-SAME: %[[VAL_1:.*]]: !torch.vtensor<[2,2,3],f32>, +// CHECK-SAME: %[[VAL_2:.*]]: !torch.vtensor<[2,2,3],f32>) -> !torch.vtensor<[5,2,2,3],f32> { // CHECK: %[[VAL_3:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[5,2,2,3],f32> -> tensor<5x2x2x3xf32> // CHECK: %[[VAL_4:.*]] = torch_c.to_builtin_tensor %[[VAL_1]] : !torch.vtensor<[2,2,3],f32> -> tensor<2x2x3xf32> // CHECK: %[[VAL_5:.*]] = torch_c.to_builtin_tensor %[[VAL_2]] : !torch.vtensor<[2,2,3],f32> -> tensor<2x2x3xf32> @@ -573,22 +575,22 @@ func.func @forward(%arg0: !torch.vtensor<[10,3,8,9,3,4],f32> ) -> !torch.vtensor // CHECK: %[[VAL_13:.*]] = tosa.reduce_sum %[[VAL_12]] {axis = 2 : i32} : (tensor<5x2x2x1xf32>) -> tensor<5x2x1x1xf32> // CHECK: %[[VAL_14:.*]] = tosa.reduce_sum %[[VAL_13]] {axis = 1 : i32} : (tensor<5x2x1x1xf32>) -> tensor<5x1x1x1xf32> // CHECK: %[[VAL_15:.*]] = tosa.reshape %[[VAL_14]] {new_shape = array} : (tensor<5x1x1x1xf32>) -> tensor<5x1x1x1xf32> -// CHECK: %[[VAL_16:.*]] = tosa.mul %[[VAL_15]], %[[VAL_11]] {shift = 0 : i32} : (tensor<5x1x1x1xf32>, tensor<1xf32>) -> tensor<5x1x1x1xf32> +// CHECK: %[[VAL_16:.*]] = tosa.mul %[[VAL_15]], %[[VAL_11]] {shift = 0 : i8} : (tensor<5x1x1x1xf32>, tensor<1xf32>) -> tensor<5x1x1x1xf32> // CHECK: %[[VAL_17:.*]] = tosa.sub %[[VAL_3]], %[[VAL_16]] : (tensor<5x2x2x3xf32>, tensor<5x1x1x1xf32>) -> tensor<5x2x2x3xf32> -// CHECK: %[[VAL_18:.*]] = tosa.mul %[[VAL_17]], %[[VAL_17]] {shift = 0 : i32} : (tensor<5x2x2x3xf32>, tensor<5x2x2x3xf32>) -> tensor<5x2x2x3xf32> +// CHECK: %[[VAL_18:.*]] = tosa.mul %[[VAL_17]], %[[VAL_17]] {shift = 0 : i8} : (tensor<5x2x2x3xf32>, tensor<5x2x2x3xf32>) -> tensor<5x2x2x3xf32> // CHECK: %[[VAL_19:.*]] = tosa.reduce_sum %[[VAL_18]] {axis = 3 : i32} : (tensor<5x2x2x3xf32>) -> tensor<5x2x2x1xf32> // CHECK: %[[VAL_20:.*]] = tosa.reduce_sum %[[VAL_19]] {axis = 2 : i32} : (tensor<5x2x2x1xf32>) -> tensor<5x2x1x1xf32> // CHECK: %[[VAL_21:.*]] = tosa.reduce_sum %[[VAL_20]] {axis = 1 : i32} : (tensor<5x2x1x1xf32>) -> tensor<5x1x1x1xf32> // CHECK: %[[VAL_22:.*]] = tosa.reshape %[[VAL_21]] {new_shape = array} : (tensor<5x1x1x1xf32>) -> tensor<5x1x1x1xf32> -// CHECK: %[[VAL_23:.*]] = tosa.mul %[[VAL_22]], %[[VAL_11]] {shift = 0 : i32} : (tensor<5x1x1x1xf32>, tensor<1xf32>) -> tensor<5x1x1x1xf32> +// CHECK: %[[VAL_23:.*]] = tosa.mul %[[VAL_22]], %[[VAL_11]] {shift = 0 : i8} : (tensor<5x1x1x1xf32>, tensor<1xf32>) -> tensor<5x1x1x1xf32> // CHECK: %[[VAL_24:.*]] = tosa.reshape %[[VAL_4]] {new_shape = array} : (tensor<2x2x3xf32>) -> tensor<1x2x2x3xf32> // CHECK: %[[VAL_25:.*]] = tosa.reshape %[[VAL_5]] {new_shape = array} : (tensor<2x2x3xf32>) -> tensor<1x2x2x3xf32> // CHECK: %[[VAL_26:.*]] = "tosa.const"() <{value = dense<5.000000e-01> : tensor}> : () -> tensor // CHECK: %[[VAL_27:.*]] = tosa.sub %[[VAL_3]], %[[VAL_16]] : (tensor<5x2x2x3xf32>, tensor<5x1x1x1xf32>) -> tensor<5x2x2x3xf32> // CHECK: %[[VAL_28:.*]] = tosa.add %[[VAL_23]], %[[VAL_26]] : (tensor<5x1x1x1xf32>, tensor) -> tensor<5x1x1x1xf32> // CHECK: %[[VAL_29:.*]] = tosa.rsqrt %[[VAL_28]] : (tensor<5x1x1x1xf32>) -> tensor<5x1x1x1xf32> -// CHECK: %[[VAL_30:.*]] = tosa.mul %[[VAL_27]], %[[VAL_29]] {shift = 0 : i32} : (tensor<5x2x2x3xf32>, tensor<5x1x1x1xf32>) -> tensor<5x2x2x3xf32> -// CHECK: %[[VAL_31:.*]] = tosa.mul %[[VAL_30]], %[[VAL_24]] {shift = 0 : i32} : (tensor<5x2x2x3xf32>, tensor<1x2x2x3xf32>) -> tensor<5x2x2x3xf32> +// CHECK: %[[VAL_30:.*]] = tosa.mul %[[VAL_27]], %[[VAL_29]] {shift = 0 : i8} : (tensor<5x2x2x3xf32>, tensor<5x1x1x1xf32>) -> tensor<5x2x2x3xf32> +// CHECK: %[[VAL_31:.*]] = tosa.mul %[[VAL_30]], %[[VAL_24]] {shift = 0 : i8} : (tensor<5x2x2x3xf32>, tensor<1x2x2x3xf32>) -> tensor<5x2x2x3xf32> // CHECK: %[[VAL_32:.*]] = tosa.add %[[VAL_31]], %[[VAL_25]] : (tensor<5x2x2x3xf32>, tensor<1x2x2x3xf32>) -> tensor<5x2x2x3xf32> // CHECK: %[[VAL_33:.*]] = torch_c.from_builtin_tensor %[[VAL_32]] : tensor<5x2x2x3xf32> -> !torch.vtensor<[5,2,2,3],f32> // CHECK: return %[[VAL_33]] : !torch.vtensor<[5,2,2,3],f32> @@ -661,12 +663,12 @@ func.func @torch.aten.bitwise_and.Tensor$basic(%arg0: !torch.vtensor<[?,?],si32> // ----- // CHECK-LABEL: func.func @torch.aten.log2$basic( -// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { +// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[?,?],f32>) -> !torch.vtensor<[?,?],f32> { // CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK: %[[VAL_2:.*]] = "tosa.const"() <{value = dense<0.693147182> : tensor<1x1xf32>}> : () -> tensor<1x1xf32> // CHECK: %[[VAL_3:.*]] = tosa.reciprocal %[[VAL_2]] : (tensor<1x1xf32>) -> tensor<1x1xf32> // CHECK: %[[VAL_4:.*]] = tosa.log %[[VAL_1]] : (tensor) -> tensor -// CHECK: %[[VAL_5:.*]] = tosa.mul %[[VAL_4]], %[[VAL_3]] {shift = 0 : i32} : (tensor, tensor<1x1xf32>) -> tensor +// CHECK: %[[VAL_5:.*]] = tosa.mul %[[VAL_4]], %[[VAL_3]] {shift = 0 : i8} : (tensor, tensor<1x1xf32>) -> tensor // CHECK: %[[VAL_6:.*]] = torch_c.from_builtin_tensor %[[VAL_5]] : tensor -> !torch.vtensor<[?,?],f32> // CHECK: return %[[VAL_6]] : !torch.vtensor<[?,?],f32> // CHECK: } @@ -974,7 +976,7 @@ func.func @torch.aten.to.dtype(%arg0: !torch.vtensor<[1,128],i1>) -> !torch.vten // CHECK: %[[VAL_11:.*]] = tosa.reshape %[[VAL_2]] {new_shape = array} : (tensor<1x4x3xf32>) -> tensor<1x12x1xf32> // CHECK: %[[VAL_12:.*]] = tosa.reshape %[[VAL_10]] {new_shape = array} : (tensor<1x4x2x3xi32>) -> tensor<8x3xi32> // CHECK: %[[VAL_13:.*]] = "tosa.const"() <{value = dense<[12, 3, 1]> : tensor<3xi32>}> : () -> tensor<3xi32> -// CHECK: %[[VAL_14:.*]] = tosa.mul %[[VAL_12]], %[[VAL_13]] {shift = 0 : i32} : (tensor<8x3xi32>, tensor<3xi32>) -> tensor<8x3xi32> +// CHECK: %[[VAL_14:.*]] = tosa.mul %[[VAL_12]], %[[VAL_13]] {shift = 0 : i8} : (tensor<8x3xi32>, tensor<3xi32>) -> tensor<8x3xi32> // CHECK: %[[VAL_15:.*]] = tosa.reduce_sum %[[VAL_14]] {axis = 1 : i32} : (tensor<8x3xi32>) -> tensor<8x1xi32> // CHECK: %[[VAL_16:.*]] = tosa.reshape %[[VAL_15]] {new_shape = array} : (tensor<8x1xi32>) -> tensor<1x8xi32> // CHECK: %[[VAL_17:.*]] = tosa.gather %[[VAL_11]], %[[VAL_16]] : (tensor<1x12x1xf32>, tensor<1x8xi32>) -> tensor<1x8x1xf32> @@ -997,7 +999,7 @@ func.func @torch.aten.gather(%arg0: !torch.vtensor<[1,4,3],f32>, %arg1: !torch.v // CHECK: %[[VAL_3:.*]] = torch_c.to_builtin_tensor %[[VAL_1]] : !torch.vtensor<[2,2],si32> -> tensor<2x2xi32> // CHECK: %[[VAL_4:.*]] = torch.constant.int 1 // CHECK: %[[VAL_5:.*]] = "tosa.const"() <{value = dense<1> : tensor}> : () -> tensor -// CHECK: %[[VAL_6:.*]] = tosa.mul %[[VAL_3]], %[[VAL_5]] {shift = 0 : i32} : (tensor<2x2xi32>, tensor) -> tensor<2x2xi32> +// CHECK: %[[VAL_6:.*]] = tosa.mul %[[VAL_3]], %[[VAL_5]] {shift = 0 : i8} : (tensor<2x2xi32>, tensor) -> tensor<2x2xi32> // CHECK: %[[VAL_7:.*]] = tosa.add %[[VAL_2]], %[[VAL_6]] : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32> // CHECK: %[[VAL_8:.*]] = tosa.cast %[[VAL_7]] : (tensor<2x2xi32>) -> tensor<2x2xi64> // CHECK: %[[VAL_9:.*]] = torch_c.from_builtin_tensor %[[VAL_8]] : tensor<2x2xi64> -> !torch.vtensor<[2,2],si64> @@ -1017,7 +1019,7 @@ func.func @torch.aten.add$basic(%arg0: !torch.vtensor<[2, 2],si32>, %arg1: !torc // CHECK: %[[VAL_3:.*]] = torch.constant.int 256 // CHECK: %[[VAL_4:.*]] = "tosa.const"() <{value = dense<256> : tensor}> : () -> tensor // CHECK: %[[VAL_5:.*]] = "tosa.const"() <{value = dense<1> : tensor}> : () -> tensor -// CHECK: %[[VAL_6:.*]] = tosa.mul %[[VAL_4]], %[[VAL_5]] {shift = 0 : i32} : (tensor, tensor) -> tensor +// CHECK: %[[VAL_6:.*]] = tosa.mul %[[VAL_4]], %[[VAL_5]] {shift = 0 : i8} : (tensor, tensor) -> tensor // CHECK: %[[VAL_7:.*]] = tosa.cast %[[VAL_1]] : (tensor<1x1x128x128xi64>) -> tensor<1x1x128x128xi32> // CHECK: %[[VAL_8:.*]] = tosa.add %[[VAL_7]], %[[VAL_6]] : (tensor<1x1x128x128xi32>, tensor) -> tensor<1x1x128x128xi32> // CHECK: %[[VAL_9:.*]] = tosa.cast %[[VAL_8]] : (tensor<1x1x128x128xi32>) -> tensor<1x1x128x128xi64> @@ -1116,17 +1118,17 @@ func.func @torch.aten.where.self(%arg0: !torch.vtensor<[1,1,5,5],i1>, %arg1: !to // ----- // CHECK-LABEL: func.func @torch.aten.remainder.Scalar( -// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[2,4],f32>) -> !torch.vtensor<[2,4],f32> { -// CHECK: %[[VAL_3:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[2,4],f32> -> tensor<2x4xf32> -// CHECK: %[[VAL_4:.*]] = torch.constant.int 2 -// CHECK: %[[VAL_5:.*]] = "tosa.const"() <{value = dense<2.000000e+00> : tensor}> : () -> tensor -// CHECK: %[[VAL_6:.*]] = tosa.reciprocal %[[VAL_5:.*]] : (tensor) -> tensor -// CHECK: %[[VAL_7:.*]] = tosa.mul %[[VAL_3:.*]], %[[VAL_6:.*]] {shift = 0 : i32} : (tensor<2x4xf32>, tensor) -> tensor<2x4xf32> -// CHECK: %[[VAL_8:.*]] = tosa.floor %[[VAL_7]] : (tensor<2x4xf32>) -> tensor<2x4xf32> -// CHECK: %[[VAL_9:.*]] = tosa.mul %[[VAL_5]], %[[VAL_8]] {shift = 0 : i32} : (tensor, tensor<2x4xf32>) -> tensor<2x4xf32> -// CHECK: %[[VAL_10:.*]] = tosa.sub %[[VAL_3]], %[[VAL_9]] : (tensor<2x4xf32>, tensor<2x4xf32>) -> tensor<2x4xf32> -// CHECK: %[[VAL_11:.*]] = torch_c.from_builtin_tensor %[[VAL_10]] : tensor<2x4xf32> -> !torch.vtensor<[2,4],f32> -// CHECK: return %[[VAL_11]] : !torch.vtensor<[2,4],f32> +// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[2,4],f32>) -> !torch.vtensor<[2,4],f32> { +// CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[2,4],f32> -> tensor<2x4xf32> +// CHECK: %[[VAL_2:.*]] = torch.constant.int 2 +// CHECK: %[[VAL_3:.*]] = "tosa.const"() <{value = dense<2.000000e+00> : tensor}> : () -> tensor +// CHECK: %[[VAL_4:.*]] = tosa.reciprocal %[[VAL_3]] : (tensor) -> tensor +// CHECK: %[[VAL_5:.*]] = tosa.mul %[[VAL_1]], %[[VAL_4]] {shift = 0 : i8} : (tensor<2x4xf32>, tensor) -> tensor<2x4xf32> +// CHECK: %[[VAL_6:.*]] = tosa.floor %[[VAL_5]] : (tensor<2x4xf32>) -> tensor<2x4xf32> +// CHECK: %[[VAL_7:.*]] = tosa.mul %[[VAL_3]], %[[VAL_6]] {shift = 0 : i8} : (tensor, tensor<2x4xf32>) -> tensor<2x4xf32> +// CHECK: %[[VAL_8:.*]] = tosa.sub %[[VAL_1]], %[[VAL_7]] : (tensor<2x4xf32>, tensor<2x4xf32>) -> tensor<2x4xf32> +// CHECK: %[[VAL_9:.*]] = torch_c.from_builtin_tensor %[[VAL_8]] : tensor<2x4xf32> -> !torch.vtensor<[2,4],f32> +// CHECK: return %[[VAL_9]] : !torch.vtensor<[2,4],f32> // CHECK: } func.func @torch.aten.remainder.Scalar(%arg0: !torch.vtensor<[2, 4],f32>) -> !torch.vtensor<[2, 4],f32> { %int2 = torch.constant.int 2 diff --git a/test/Conversion/TorchToTosa/torch-backend-to-tosa-backend-pipeline.mlir b/test/Conversion/TorchToTosa/torch-backend-to-tosa-backend-pipeline.mlir index c1d1d915b017b..5813cd4351ac3 100644 --- a/test/Conversion/TorchToTosa/torch-backend-to-tosa-backend-pipeline.mlir +++ b/test/Conversion/TorchToTosa/torch-backend-to-tosa-backend-pipeline.mlir @@ -1,9 +1,11 @@ // RUN: torch-mlir-opt -pass-pipeline='builtin.module(torch-backend-to-tosa-backend-pipeline)' -split-input-file -verify-diagnostics %s | FileCheck %s -// CHECK-LABEL: torch.aten.mul.Scalar$mixed_type -// CHECK-SAME: %[[VAL_0:.*]]: tensor<5xbf16> -// CHECK: %[[VAL_1:.*]] = "tosa.const"() <{value = dense<2.000000e+00> : tensor<1xbf16>}> : () -> tensor<1xbf16> -// CHECK: %[[VAL_2:.*]] = tosa.mul %[[VAL_0]], %[[VAL_1]] {shift = 0 : i32} : (tensor<5xbf16>, tensor<1xbf16>) -> tensor<5xbf16> +// CHECK-LABEL: func.func @torch.aten.mul.Scalar$mixed_type( +// CHECK-SAME: %[[VAL_0:.*]]: tensor<5xbf16>) -> tensor<5xbf16> { +// CHECK: %[[VAL_1:.*]] = "tosa.const"() <{value = dense<2.000000e+00> : tensor<1xbf16>}> : () -> tensor<1xbf16> +// CHECK: %[[VAL_2:.*]] = tosa.mul %[[VAL_0]], %[[VAL_1]] {shift = 0 : i8} : (tensor<5xbf16>, tensor<1xbf16>) -> tensor<5xbf16> +// CHECK: return %[[VAL_2]] : tensor<5xbf16> +// CHECK: } func.func @torch.aten.mul.Scalar$mixed_type(%arg0: !torch.vtensor<[5],bf16>) -> !torch.vtensor<[5],bf16> { %float2.000000e00 = torch.constant.float 2.000000e+00 %0 = torch.aten.mul.Scalar %arg0, %float2.000000e00 : !torch.vtensor<[5],bf16>, !torch.float -> !torch.vtensor<[5],bf16> @@ -88,12 +90,14 @@ func.func @torch.aten.bitwise_and.Tensor$mixed_type(%arg0: !torch.vtensor<[?,?], // ----- -// CHECK-LABEL: torch.aten.div.Tensor$mixed_type_fp -// CHECK-SAME: %[[VAL_0:.*]]: tensor, -// CHECK-SAME: %[[VAL_1:.*]]: tensor -// CHECK: %[[VAL_2:.*]] = tosa.cast %[[VAL_1]] : (tensor) -> tensor -// CHECK: %[[VAL_3:.*]] = tosa.reciprocal %[[VAL_2]] : (tensor) -> tensor -// CHECK: %[[VAL_4:.*]] = tosa.mul %[[VAL_0]], %[[VAL_3]] {shift = 0 : i32} : (tensor, tensor) -> tensor +// CHECK-LABEL: func.func @torch.aten.div.Tensor$mixed_type_fp( +// CHECK-SAME: %[[VAL_0:.*]]: tensor, +// CHECK-SAME: %[[VAL_1:.*]]: tensor) -> tensor { +// CHECK: %[[VAL_2:.*]] = tosa.cast %[[VAL_1]] : (tensor) -> tensor +// CHECK: %[[VAL_3:.*]] = tosa.reciprocal %[[VAL_2]] : (tensor) -> tensor +// CHECK: %[[VAL_4:.*]] = tosa.mul %[[VAL_0]], %[[VAL_3]] {shift = 0 : i8} : (tensor, tensor) -> tensor +// CHECK: return %[[VAL_4]] : tensor +// CHECK: } func.func @torch.aten.div.Tensor$mixed_type_fp(%arg0: !torch.vtensor<[?, ?],f32>, %arg1: !torch.vtensor<[?, ?],si32>) -> !torch.vtensor<[?, ?],f32> { %0 = torch.aten.div.Tensor %arg0, %arg1 : !torch.vtensor<[?, ?],f32>, !torch.vtensor<[?, ?],si32> -> !torch.vtensor<[?, ?],f32> return %0 : !torch.vtensor<[?, ?],f32>