diff --git a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp index 3d0d6abf702d70..6da886f5ec19e1 100644 --- a/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp +++ b/mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp @@ -946,27 +946,22 @@ getTensorExtractMemoryAccessPattern(tensor::ExtractOp extractOp, if (linalgOp.hasDynamicShape()) return VectorMemoryAccessKind::Gather; - // 1. Assume that it's a gather load when reading _into_: - // * an n-D "vector", like `tensor<1x2x4xi32` or `tensor<2x1x4xi32>`, or - // * a 1-D "vector" with the trailing dim equal 1, e.g. `tensor<1x4x1xi32`. - // TODO: Relax these conditions. - // FIXME: This condition assumes non-dynamic sizes. - if ((llvm::count_if(targetShape, - [](int64_t dimSize) { return dimSize > 1; }) != 1) || - targetShape.back() == 1) - return VectorMemoryAccessKind::Gather; - - // 2. Assume that it's a gather load when reading _from_ a tensor for which - // the trailing dimension is 1, e.g. `tensor<1x4x1xi32>`. - // TODO: Relax this condition. - if (inputShape.getShape().back() == 1) + // True for vectors that are effectively 1D, e.g. `vector<1x4x1xi32>`, false + // otherwise. + bool isOutput1DVector = (llvm::count_if(targetShape, [](int64_t dimSize) { + return dimSize > 1; + }) == 1); + + // 1. Assume that it's a gather load when reading non-1D vector. + if (!isOutput1DVector) return VectorMemoryAccessKind::Gather; bool leadingIdxsLoopInvariant = true; - // 3. Analyze the leading indices of `extractOp`. + // 2. Analyze the leading indices of `extractOp`. // Look at the way each index is calculated and decide whether it is suitable - // for a contiguous load, i.e. whether it's loop invariant. + // for a contiguous load, i.e. whether it's loop invariant. If not, it's a + // gather load. auto indices = extractOp.getIndices(); auto leadIndices = indices.drop_back(1); @@ -982,13 +977,13 @@ getTensorExtractMemoryAccessPattern(tensor::ExtractOp extractOp, return VectorMemoryAccessKind::Gather; } - // 4. Analyze the trailing index for `extractOp`. + // 3. Analyze the trailing index for `extractOp`. // At this point we know that the leading indices are loop invariant. This // means that is potentially a scalar or a contiguous load. We can decide // based on the trailing idx. auto extractOpTrailingIdx = indices.back(); - // 4a. Scalar broadcast load + // 3a. Scalar broadcast load // If the trailing index is loop invariant then this is a scalar load. if (leadingIdxsLoopInvariant && isLoopInvariantIdx(linalgOp, extractOpTrailingIdx)) { @@ -997,7 +992,7 @@ getTensorExtractMemoryAccessPattern(tensor::ExtractOp extractOp, return VectorMemoryAccessKind::ScalarBroadcast; } - // 4b. Contiguous loads + // 3b. Contiguous loads // The trailing `extractOp` index should increment with every loop iteration. // This effectively means that it must be based on the trailing loop index. // This is what the following bool captures. @@ -1011,7 +1006,7 @@ getTensorExtractMemoryAccessPattern(tensor::ExtractOp extractOp, return VectorMemoryAccessKind::Contiguous; } - // 5. Fallback case - gather load. + // 4. Fallback case - gather load. LDBG("Found gather load: " << extractOp); return VectorMemoryAccessKind::Gather; } diff --git a/mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir b/mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir index 85e1c56dd45a0d..ac75a19cbeb28e 100644 --- a/mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir +++ b/mlir/test/Dialect/Linalg/vectorize-tensor-extract.mlir @@ -595,3 +595,59 @@ module attributes {transform.with_named_sequence} { transform.yield } } + + +// ----- + +func.func @vectorize_scalar_broadcast_column_tensor(%in: tensor<1x1x4xi32>) -> tensor<1x1x4xi32> { + %c4 = arith.constant 4 : index + %c0 = arith.constant 0 : index + %cst = arith.constant dense<[[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]]> : tensor<15x1xi32> + + %out = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>], iterator_types = ["parallel", "parallel", "parallel"]} outs(%in : tensor<1x1x4xi32>) { + ^bb0(%out: i32): + %8 = linalg.index 0 : index + %idx_0 = linalg.index 0 : index + %extracted = tensor.extract %cst[%idx_0, %c0] : tensor<15x1xi32> + linalg.yield %extracted : i32 + } -> tensor<1x1x4xi32> + + return %out:tensor<1x1x4xi32> +} + +// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1) -> (0, 0, 0)> +// CHECK-LABEL: func.func @vectorize_scalar_broadcast_column_tensor( +// CHECK-SAME: %[[VAL_0:.*]]: tensor<1x1x4xi32>) -> tensor<1x1x4xi32> { +// CHECK: %[[VAL_1:.*]] = arith.constant 4 : index +// CHECK: %[[VAL_2:.*]] = arith.constant 0 : index +// CHECK: %[[VAL_3:.*]] = arith.constant dense<{{\[\[}}0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]]> : tensor<15x1xi32> +// CHECK: %[[VAL_4:.*]] = arith.constant 1 : index +// CHECK: %[[VAL_5:.*]] = arith.constant 1 : index +// CHECK: %[[VAL_6:.*]] = arith.constant 4 : index +// CHECK: %[[VAL_7:.*]] = arith.constant 0 : index +// CHECK: %[[VAL_8:.*]] = arith.constant 0 : i32 +// CHECK: %[[VAL_9:.*]] = vector.transfer_read %[[VAL_0]]{{\[}}%[[VAL_7]], %[[VAL_7]], %[[VAL_7]]], %[[VAL_8]] : tensor<1x1x4xi32>, vector<1x1x4xi32> +// CHECK: %[[VAL_10:.*]] = vector.step : vector<1xindex> +// CHECK: %[[VAL_11:.*]] = vector.broadcast %[[VAL_10]] : vector<1xindex> to vector<4x1x1xindex> +// CHECK: %[[VAL_12:.*]] = vector.transpose %[[VAL_11]], [2, 1, 0] : vector<4x1x1xindex> to vector<1x1x4xindex> +// CHECK: %[[VAL_13:.*]] = vector.step : vector<1xindex> +// CHECK: %[[VAL_14:.*]] = vector.broadcast %[[VAL_13]] : vector<1xindex> to vector<4x1x1xindex> +// CHECK: %[[VAL_15:.*]] = vector.transpose %[[VAL_14]], [2, 1, 0] : vector<4x1x1xindex> to vector<1x1x4xindex> +// CHECK: %[[VAL_16:.*]] = arith.constant dense : vector<1x1x4xi1> +// CHECK: %[[VAL_17:.*]] = arith.constant dense<0> : vector<1x1x4xi32> +// CHECK: %[[VAL_18:.*]] = arith.constant 0 : index +// CHECK: %[[VAL_19:.*]] = arith.constant 0 : i32 +// CHECK: %[[VAL_20:.*]] = vector.shape_cast %[[VAL_15]] : vector<1x1x4xindex> to vector<4xindex> +// CHECK: %[[VAL_21:.*]] = vector.extractelement %[[VAL_20]]{{\[}}%[[VAL_19]] : i32] : vector<4xindex> +// CHECK: %[[VAL_22:.*]] = arith.constant 0 : i32 +// CHECK: %[[VAL_23:.*]] = vector.transfer_read %[[VAL_3]]{{\[}}%[[VAL_21]], %[[VAL_2]]], %[[VAL_22]] {in_bounds = [true, true, true], permutation_map = #[[$ATTR_1]]} : tensor<15x1xi32>, vector<1x1x4xi32> +// CHECK: %[[VAL_24:.*]] = arith.constant 0 : index +// CHECK: %[[VAL_25:.*]] = vector.transfer_write %[[VAL_23]], %[[VAL_0]]{{\[}}%[[VAL_24]], %[[VAL_24]], %[[VAL_24]]] : vector<1x1x4xi32>, tensor<1x1x4xi32> + +module attributes {transform.with_named_sequence} { + transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) { + %0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op + transform.structured.vectorize %0 vector_sizes [1, 1, 4]{ vectorize_nd_extract } : !transform.any_op + transform.yield + } +}