forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodeling_utils.py
605 lines (529 loc) · 24.5 KB
/
modeling_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
import copy
import json
import os
from typing import List, Optional
import numpy as np
import safetensors
import torch
from .._common import default_net
from .._utils import (numpy_to_torch, str_dtype_to_torch, str_dtype_to_trt,
trt_dtype_to_torch)
from ..functional import PositionEmbeddingType, Tensor, gather_last_token_logits
from ..layers import (AttentionParams, FusedGatedMLP, GatedMLP,
KeyValueCacheParams, LoraParams)
from ..mapping import Mapping
from ..module import Module, ModuleList
from ..quantization import QuantMode
from ..quantization.quantize import quantize
from .generation_mixin import GenerationMixin
class PretrainedConfig:
def __init__(self,
architecture: str,
dtype: str,
logits_dtype: str,
vocab_size: int,
max_position_embeddings: int,
hidden_size: int,
num_hidden_layers: int,
num_attention_heads: int,
num_key_value_heads: int,
hidden_act: str,
intermediate_size: int,
norm_epsilon: float,
position_embedding_type: str,
world_size: int,
tp_size: int,
pp_size: int,
quant_mode: QuantMode,
quant_kwargs: dict,
use_prompt_tuning: bool = False,
use_parallel_embedding: bool = False,
embedding_sharding_dim: int = 0,
share_embedding_table: bool = False,
max_lora_rank: int = 64,
head_size: int = None,
**kwargs):
self.architecture = architecture
self.dtype = dtype
self.logits_dtype = logits_dtype
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.head_size = hidden_size // num_attention_heads if head_size is None else head_size
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.norm_epsilon = norm_epsilon
self.position_embedding_type = PositionEmbeddingType.from_string(
position_embedding_type)
self.use_prompt_tuning = use_prompt_tuning
self.use_parallel_embedding = use_parallel_embedding
self.embedding_sharding_dim = embedding_sharding_dim
self.share_embedding_table = share_embedding_table
self.mapping = Mapping(world_size=world_size,
tp_size=tp_size,
pp_size=pp_size)
self.quant_mode = quant_mode
self.quant_kwargs = quant_kwargs
self.kv_dtype = self.dtype
self.max_lora_rank = max_lora_rank
if self.quant_mode.has_int8_kv_cache():
self.kv_dtype = 'int8'
elif self.quant_mode.has_fp8_kv_cache():
self.kv_dtype = 'fp8'
for key, value in kwargs.items():
try:
setattr(self, key, value)
except AttributeError as err:
raise err
def set_if_not_exist(self, key, value):
if not hasattr(self, key):
setattr(self, key, value)
@classmethod
def from_dict(cls, config):
architecture = config.pop('architecture')
dtype = config.pop('dtype')
vocab_size = config.pop('vocab_size')
hidden_size = config.pop('hidden_size')
num_hidden_layers = config.pop('num_hidden_layers')
num_attention_heads = config.pop('num_attention_heads')
hidden_act = config.pop('hidden_act')
norm_epsilon = config.pop('norm_epsilon', 1e-5)
position_embedding_type = config.pop('position_embedding_type',
'learned_absolute')
logits_dtype = config.pop('logits_dtype', 'float32')
num_key_value_heads = config.pop('num_key_value_heads',
num_attention_heads)
intermediate_size = config.pop('intermediate_size', None)
max_position_embeddings = config.pop('max_position_embeddings', None)
use_prompt_tuning = config.pop('use_prompt_tuning', False)
use_parallel_embedding = config.pop('use_parallel_embedding', False)
embedding_sharding_dim = config.pop('embedding_sharding_dim', 0)
share_embedding_table = config.pop('share_embedding_table', False)
mapping = config.pop('mapping', {
'world_size': 1,
'tp_size': 1,
'pp_size': 1
})
world_size = mapping.get('world_size', 1)
tp_size = mapping.get('tp_size', 1)
pp_size = mapping.get('pp_size', 1)
if share_embedding_table and mapping.tp_size > 1:
if (not use_parallel_embedding) or (use_parallel_embedding and
embedding_sharding_dim == 1):
raise NotImplementedError(
"For multiple-processes cases, sharing the embedding table must set" \
"use_parallel_embedding=True and embedding_sharding_dim=0"
)
quantization = config.pop(
'quantization', {
'quant_algo': None,
'kv_cache_quant_algo': None,
'group_size': 128,
'has_zero_point': False,
'pre_quant_scale': False,
'exclude_modules': None,
'sq_use_plugin': False,
})
quant_algo = quantization.get('quant_algo', None)
kv_cache_quant_algo = quantization.get('kv_cache_quant_algo', None)
group_size = quantization.get('group_size', 128)
has_zero_point = quantization.get('has_zero_point', False)
pre_quant_scale = quantization.get('pre_quant_scale', False)
exclude_modules = quantization.get('exclude_modules', None)
sq_use_plugin = quantization.get('sq_use_plugin', False)
quant_mode = QuantMode.from_quant_algo(quant_algo, kv_cache_quant_algo)
quant_kwargs = {
'quant_algo': quant_algo,
'kv_cache_quant_algo': kv_cache_quant_algo,
'group_size': group_size,
'zero': has_zero_point,
'pre_quant_scale': pre_quant_scale,
'exclude_modules': exclude_modules,
'sq_use_plugin': sq_use_plugin,
}
max_lora_rank = config.pop('max_lora_rank', 64)
return cls(architecture, dtype, logits_dtype, vocab_size,
max_position_embeddings, hidden_size, num_hidden_layers,
num_attention_heads, num_key_value_heads, hidden_act,
intermediate_size, norm_epsilon, position_embedding_type,
world_size, tp_size, pp_size, quant_mode, quant_kwargs,
use_prompt_tuning, use_parallel_embedding,
embedding_sharding_dim, share_embedding_table, max_lora_rank,
**config)
@classmethod
def from_json_file(cls, config_file: str):
with open(config_file) as f:
config = json.load(f)
return PretrainedConfig.from_dict(config)
def to_dict(self):
output = copy.deepcopy(self.__dict__)
output['position_embedding_type'] = str(self.position_embedding_type)
output['mapping'] = {
'world_size': self.mapping.world_size,
'tp_size': self.mapping.tp_size,
'pp_size': self.mapping.pp_size,
}
output.pop('quant_mode')
output.pop('quant_kwargs')
output['quantization'] = {
'quant_algo':
self.quant_kwargs.get('quant_algo', None),
'kv_cache_quant_algo':
self.quant_kwargs.get('kv_cache_quant_algo', None),
'group_size':
self.quant_kwargs.get('group_size', 128),
'has_zero_point':
self.quant_kwargs.get('zero', False),
'pre_quant_scale':
self.quant_kwargs.get('pre_quant_scale', False),
'exclude_modules':
self.quant_kwargs.get('exclude_modules', None),
'sq_use_plugin':
self.quant_kwargs.get('sq_use_plugin', False),
}
return output
def set_rank(self, rank):
self.mapping = Mapping(self.mapping.world_size,
rank=rank,
tp_size=self.mapping.tp_size,
pp_size=self.mapping.pp_size)
class DecoderLayerList(ModuleList):
def __init__(self, cls, config):
self.layer_list = config.mapping.pp_layers(config.num_hidden_layers)
super().__init__([cls(config, idx) for idx in self.layer_list])
def forward(self,
hidden_states,
use_cache=False,
attention_mask=None,
kv_cache_params=None,
attention_params=None,
lora_params=None,
medusa_position_offsets=None,
medusa_packed_mask=None):
kv_cache_params.fill_none_tensor_list(len(self.layer_list))
if use_cache:
presents = []
for layer_idx, (
layer, past, pointer, host_pointer,
max_attention_window_size) in enumerate(
zip(self, kv_cache_params.past_key_value,
kv_cache_params.kv_cache_block_pointers,
kv_cache_params.host_kv_cache_block_pointers,
kv_cache_params.host_max_attention_window_sizes)):
lora_layer_params = None
if lora_params is not None and lora_params.lora_ranks is not None:
lora_layer_params = lora_params.get_layer_params(layer_idx)
kwargs = {}
if lora_layer_params is not None:
kwargs['lora_layer_params'] = lora_layer_params
if medusa_position_offsets is not None:
kwargs['medusa_position_offsets'] = medusa_position_offsets
if medusa_packed_mask is not None:
kwargs['medusa_packed_mask'] = medusa_packed_mask
hidden_states = layer(
hidden_states,
use_cache=use_cache,
attention_mask=attention_mask,
kv_cache_params=KeyValueCacheParams(
past_key_value=[past],
host_past_key_value_lengths=kv_cache_params.
host_past_key_value_lengths,
host_max_attention_window_sizes=max_attention_window_size,
host_sink_token_length=kv_cache_params.
host_sink_token_length,
kv_cache_block_pointers=[pointer],
host_kv_cache_block_pointers=[host_pointer],
cache_indirection=kv_cache_params.cache_indirection),
attention_params=attention_params,
**kwargs)
if use_cache:
presents.append(hidden_states[1])
hidden_states = hidden_states[0]
if use_cache:
return hidden_states, presents
return hidden_states
class PostInitCaller(type):
def __call__(cls, *args, **kwargs):
obj = type.__call__(cls, *args, **kwargs)
obj.__post_init__()
return obj
class PretrainedModel(Module, GenerationMixin, metaclass=PostInitCaller):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.config = config
def __post_init__(self):
quantize(self, self.config.quant_mode, **self.config.quant_kwargs)
def check_config(self, config):
raise NotImplementedError(
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
)
@classmethod
def from_config(cls, config: PretrainedConfig):
return cls(config)
@classmethod
def from_checkpoint(cls,
ckpt_dir: str,
rank: int = 0,
config: PretrainedConfig = None):
if config is None:
config = PretrainedConfig.from_json_file(
os.path.join(ckpt_dir, 'config.json'))
config.set_rank(rank)
model = cls.from_config(config)
weights = {}
with safetensors.safe_open(os.path.join(ckpt_dir,
f'rank{rank}.safetensors'),
framework='pt',
device='cpu') as f:
for key in f.keys():
weights[key] = f.get_tensor(key)
model.load(weights)
return model
def load(self, weights):
expected_names = set([name for name, param in self.named_parameters()])
provided_names = set(weights.keys())
if provided_names != expected_names:
err_msg = "Provided tensor names are different from those expected by the engine."
if expected_names.difference(provided_names):
err_msg += f"\nExpected but not provided tensors: {expected_names.difference(provided_names)}"
if provided_names.difference(expected_names):
err_msg += f"\nProvided but not expected tensors: {provided_names.difference(expected_names)}"
raise RuntimeError(err_msg)
for name, param in self.named_parameters():
param.value = weights[name]
def prepare_inputs(self,
max_batch_size,
max_input_len,
max_seq_len,
use_cache,
max_beam_width: int = 1,
max_num_tokens: int = None,
prompt_embedding_table_size: int = 0,
position_encoding_2d: bool = False,
max_draft_len: int = 0,
gather_context_logits: bool = False,
gather_generation_logits: bool = False,
lora_target_modules: List[str] = None):
'''@brief: Prepare inputs Tensors for the model, the given sizes are used to determine the
ranges of the dimensions of when using TRT dynamic shapes.
@return: a list contains values which can be fed into the self.forward()
'''
# Prepare inputs
remove_input_padding = default_net().plugin_config.remove_input_padding
use_gpt_attention_plugin = default_net(
).plugin_config.gpt_attention_plugin
use_gemm_plugin = default_net().plugin_config.gemm_plugin
paged_kv_cache = default_net().plugin_config.paged_kv_cache
tokens_per_block = default_net().plugin_config.tokens_per_block
use_custom_all_reduce = default_net(
).plugin_config.use_custom_all_reduce
use_lora_plugin = default_net().plugin_config.lora_plugin
model_inputs = self.prepare_basic_inputs(
max_batch_size=max_batch_size,
max_beam_width=max_beam_width,
max_input_len=max_input_len,
max_seq_len=max_seq_len,
num_kv_heads=self.config.num_key_value_heads,
head_size=self.config.head_size,
num_layers=self.config.num_hidden_layers,
kv_dtype=str_dtype_to_trt(self.config.kv_dtype),
remove_input_padding=remove_input_padding,
use_gpt_attention_plugin=use_gpt_attention_plugin,
use_gemm_plugin=use_gemm_plugin,
paged_kv_cache=paged_kv_cache,
tokens_per_block=tokens_per_block,
num_heads=self.config.num_attention_heads,
max_num_tokens=max_num_tokens,
dtype=str_dtype_to_trt(self.config.dtype),
prompt_embedding_table_size=prompt_embedding_table_size,
position_encoding_2d=position_encoding_2d,
mapping=self.config.mapping,
gather_context_logits=gather_context_logits,
gather_generation_logits=gather_generation_logits,
use_custom_all_reduce=use_custom_all_reduce,
use_lora_plugin=use_lora_plugin,
max_draft_len=max_draft_len,
lora_target_modules=lora_target_modules)
result = {
'input_ids':
model_inputs['input_ids'],
'position_ids':
model_inputs['position_ids'],
'use_cache':
True,
'last_token_ids':
model_inputs['last_token_ids'],
'attention_mask':
model_inputs['attention_mask'],
'kv_cache_params':
KeyValueCacheParams(
past_key_value=model_inputs['past_key_value'],
host_past_key_value_lengths=model_inputs[
'host_past_key_value_lengths'],
host_max_attention_window_sizes=model_inputs[
'host_max_attention_window_sizes'],
host_sink_token_length=model_inputs['host_sink_token_length'],
kv_cache_block_pointers=model_inputs[
'kv_cache_block_pointers_list'],
host_kv_cache_block_pointers=model_inputs[
'host_kv_cache_block_pointers_list'],
cache_indirection=model_inputs['cache_indirection'],
),
'attention_params':
AttentionParams(
sequence_length=model_inputs['sequence_length'],
context_lengths=model_inputs['context_lengths'],
host_context_lengths=model_inputs['host_context_lengths'],
max_context_length=max_input_len,
host_request_types=model_inputs['host_request_types'])
}
if prompt_embedding_table_size > 0:
result['prompt_embedding_table'] = model_inputs[
'prompt_embedding_table']
result['prompt_tasks'] = model_inputs['tasks']
result['prompt_vocab_size'] = model_inputs['prompt_vocab_size']
if model_inputs['hidden_states_input'] is not None:
result['hidden_states'] = model_inputs['hidden_states_input']
if use_lora_plugin:
result['lora_params'] = LoraParams(
model_inputs['lora_ranks'],
model_inputs['lora_weights_pointers'],
host_context_lengths=model_inputs['host_context_lengths'],
max_context_length=max_input_len,
host_request_types=model_inputs['host_request_types'])
return result
class DecoderModelForCausalLM(PretrainedModel):
def __init__(self, config, transformer, lm_head):
super().__init__(config)
self.transformer = transformer
self.lm_head = lm_head
def forward(self,
input_ids: Tensor,
position_ids=None,
use_cache=False,
last_token_ids=None,
attention_mask=None,
kv_cache_params=None,
attention_params=None,
hidden_states=None,
prompt_embedding_table: Optional[Tensor] = None,
prompt_tasks: Optional[Tensor] = None,
prompt_vocab_size: Optional[Tensor] = None,
lora_params=None,
medusa_position_offsets=None,
medusa_packed_mask=None):
kwargs = {
'input_ids': input_ids,
'position_ids': position_ids,
'use_cache': use_cache,
'attention_mask': attention_mask,
'kv_cache_params': kv_cache_params,
'attention_params': attention_params,
}
if lora_params is not None:
kwargs['lora_params'] = lora_params
if hidden_states is not None:
kwargs['hidden_states'] = hidden_states
if prompt_embedding_table is not None:
kwargs['prompt_embedding_table'] = prompt_embedding_table
if prompt_tasks is not None:
kwargs['prompt_tasks'] = prompt_tasks
if prompt_vocab_size is not None:
kwargs['prompt_vocab_size'] = prompt_vocab_size
if medusa_position_offsets is not None:
kwargs['medusa_position_offsets'] = medusa_position_offsets
if medusa_packed_mask is not None:
kwargs['medusa_packed_mask'] = medusa_packed_mask
hidden_states = self.transformer.forward(**kwargs)
if use_cache:
hidden_states, presents = hidden_states
if self.config.mapping.is_last_pp_rank():
hidden_states = gather_last_token_logits(
hidden_states, last_token_ids,
default_net().plugin_config.remove_input_padding)
# [batch_size, hidden_size] -> [batch_size, vocab_size]
lm_logits = self.lm_head(hidden_states)
lm_logits.mark_output('logits', self.config.logits_dtype)
else:
hidden_states.mark_output('hidden_states_output', self.config.dtype)
if use_cache and not default_net().plugin_config.paged_kv_cache:
for i, present in zip(
self.config.mapping.pp_layers(
self.config.num_hidden_layers), presents):
present.mark_output(f'present_key_value_{i}',
self.config.kv_dtype)
if self.config.mapping.is_last_pp_rank():
return (lm_logits, presents, hidden_states)
return (hidden_states, presents)
else:
if self.config.mapping.is_last_pp_rank():
return lm_logits, hidden_states
return hidden_states
def fuse_gate_mlp(model):
for layer in model.transformer.layers:
if not hasattr(layer, 'mlp'):
continue
quant_algo = model.config.quant_kwargs['quant_algo']
if isinstance(layer.mlp, GatedMLP):
fused_layer = FusedGatedMLP(
hidden_size=layer.mlp.hidden_size,
ffn_hidden_size=layer.mlp.ffn_hidden_size,
hidden_act=layer.mlp.hidden_act,
bias=layer.mlp.bias,
dtype=layer.mlp.dtype,
tp_group=layer.mlp.tp_group,
tp_size=layer.mlp.tp_size,
quant_mode=layer.mlp.quant_mode,
max_lora_rank=layer.mlp.max_lora_rank)
if quant_algo == 'FP8':
if isinstance(layer.mlp.dtype, str):
dtype = str_dtype_to_torch(layer.mlp.dtype)
else:
dtype = trt_dtype_to_torch(layer.mlp.dtype)
# dequantize
gate_weight = numpy_to_torch(
layer.mlp.gate.weight.raw_value).to(dtype) * numpy_to_torch(
layer.mlp.gate.weights_scaling_factor.raw_value)
fc_weight = numpy_to_torch(
layer.mlp.fc.weight.raw_value).to(dtype) * numpy_to_torch(
layer.mlp.fc.weights_scaling_factor.raw_value)
# concat
fused_weight = torch.cat([gate_weight, fc_weight], dim=0)
# quantize
fused_weight_scaling_factor = numpy_to_torch(
max(
layer.mlp.gate.weights_scaling_factor.raw_value,
layer.mlp.fc.weights_scaling_factor.raw_value,
))
fused_weight = (fused_weight / fused_weight_scaling_factor).to(
torch.float8_e4m3fn)
fused_layer.fused_fc.weight.value = fused_weight
fused_layer.fused_fc.weights_scaling_factor.value = fused_weight_scaling_factor
fused_layer.fused_fc.activation_scaling_factor.value = \
max(layer.mlp.gate.activation_scaling_factor.raw_value,
layer.mlp.fc.activation_scaling_factor.raw_value
)
elif quant_algo is None:
fused_layer.fused_fc.weight.value = np.concatenate([
layer.mlp.gate.weight.raw_value,
layer.mlp.fc.weight.raw_value
],
axis=0)
if layer.mlp.bias:
fused_layer.fused_fc.bias.value = np.concatenate([
layer.mlp.gate.bias.raw_value,
layer.mlp.fc.bias.raw_value
],
axis=0)
else:
raise ValueError(f'Unsupported quant algo: {quant_algo}')
fused_layer.proj = layer.mlp.proj
layer.mlp = fused_layer
return model
def optimize_model(model, use_fused_mlp=False):
if use_fused_mlp:
model = fuse_gate_mlp(model)
return model