forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattention.py
1224 lines (1092 loc) · 53.6 KB
/
attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import List, Optional
import numpy as np
import tensorrt as trt
from .._common import default_net, precision
from .._utils import (fp32_array, int32_array, numpy_fp32_to_bf16,
preview_trt_version, trt_dtype_to_np, trt_dtype_to_str)
from ..functional import (AttentionMaskType, PositionEmbeddingType,
RotaryScalingType, Tensor, arange, bert_attention,
cast, clip, concat, constant, embedding, expand,
expand_dims, expand_mask, generate_alibi_biases,
generate_alibi_slopes, gpt_attention, matmul,
repeat_interleave, shape, slice, softmax, split,
unsqueeze, view, where)
from ..module import Module
from ..parameter import Parameter
from ..quantization import QuantMode
from ..quantization.functional import dequantize, quantize
from ..quantization.layers import FP8Linear, FP8RowLinear
from .linear import ColumnLinear, RowLinear
from .lora import Lora, LoraRuntimeParams
class RopeEmbeddingUtils:
@staticmethod
def create_sinusoidal_positions(num_pos: int,
dim: int,
theta: float = 10000.0,
dtype=np.float32):
inv_freq = 1.0 / (theta**(np.arange(0, dim, 2) / dim)).astype(dtype)
sinusoid_inp = np.einsum("i , j -> i j",
np.arange(num_pos, dtype=dtype),
inv_freq,
dtype=dtype)
concat = np.concatenate((np.sin(sinusoid_inp), np.cos(sinusoid_inp)),
axis=1)
return np.expand_dims(concat, axis=0).astype(dtype)
@staticmethod
def rotate_every_two(tensor: Tensor) -> Tensor:
assert tensor.ndim() == 4
shape_tensor = concat([
shape(tensor, i) / 2 if i == (tensor.ndim() -
1) else shape(tensor, i)
for i in range(tensor.ndim())
])
x1 = slice(tensor, [0, 0, 0, 0], shape_tensor, [1, 1, 1, 2])
x2 = slice(tensor, [0, 0, 0, 1], shape_tensor, [1, 1, 1, 2])
x1 = expand_dims(x1, 4)
x2 = expand_dims(x2, 4)
zero = constant(
np.ascontiguousarray(
np.zeros([1], dtype=trt_dtype_to_np(tensor.dtype))))
x2 = zero - x2
x = concat([x2, x1], 4)
return view(
x, concat([shape(x, 0),
shape(x, 1),
shape(x, 2),
shape(x, 3) * 2]))
@staticmethod
def rotate_half(tensor: Tensor) -> Tensor:
# [bs, num_attention_kv_heads, seqlen, attention_head_size]
assert tensor.ndim() == 4
shape_tensor = concat([
shape(tensor, i) / 2 if i == (tensor.ndim() -
1) else shape(tensor, i)
for i in range(tensor.ndim())
])
last_dim = shape(tensor, tensor.ndim() - 1) / 2
x1 = slice(tensor, [0, 0, 0, 0], shape_tensor, [1, 1, 1, 1])
x2 = slice(tensor, concat([0, 0, 0, last_dim]), shape_tensor,
[1, 1, 1, 1])
zero = constant(
np.ascontiguousarray(
np.zeros([1], dtype=trt_dtype_to_np(tensor.dtype))))
x2 = zero - x2
x = concat([x2, x1], 3)
return x
@staticmethod
def apply_rotary_pos_emb(
tensor: Tensor,
position_embedding: List[Tensor] = None,
pos_emb_type: PositionEmbeddingType = PositionEmbeddingType.rope_gptj
) -> Tensor:
rotate_func = None
if pos_emb_type == PositionEmbeddingType.rope_gpt_neox:
assert len(position_embedding) == 2
cos, sin = position_embedding
sin = expand_dims(sin, 2)
cos = expand_dims(cos, 2)
sin = concat([sin, sin], 3)
cos = concat([cos, cos], 3)
rotate_func = RopeEmbeddingUtils.rotate_half
elif pos_emb_type == PositionEmbeddingType.rope_gptj:
assert len(position_embedding) == 2
cos, sin = position_embedding
sin = expand_dims(sin, 2)
cos = expand_dims(cos, 2)
sin = repeat_interleave(sin, 2, 3)
cos = repeat_interleave(cos, 2, 3)
rotate_func = RopeEmbeddingUtils.rotate_every_two
elif pos_emb_type == PositionEmbeddingType.chatglm:
assert len(position_embedding) == 4
cos0, cos1, sin0, sin1 = position_embedding
shape_tensor = concat([
shape(tensor, i) / 2 if i == (tensor.ndim() -
1) else shape(tensor, i)
for i in range(tensor.ndim())
])
last_dim = shape(tensor, tensor.ndim() - 1) / 2
x_part0 = slice(tensor, [0, 0, 0, 0], shape_tensor, [1, 1, 1, 1])
x_part1 = slice(tensor, concat([0, 0, 0, last_dim]), shape_tensor,
[1, 1, 1, 1])
y_part0 = (x_part0 *
cos0) + (RopeEmbeddingUtils.rotate_half(x_part0) * sin0)
y_part1 = (x_part1 *
cos1) + (RopeEmbeddingUtils.rotate_half(x_part1) * sin1)
result = concat([y_part0, y_part1], dim=3)
return result.view(shape(tensor))
else:
raise ValueError('The PositionEmbeddingType is not RoPE')
return (tensor * cos) + (rotate_func(tensor) * sin)
@staticmethod
def apply_rotary_pos_emb_chatglm(qkv, position_embedding,
num_attention_heads, attention_head_size,
max_position_embeddings,
rotary_embedding_scale,
remove_input_padding) -> Tensor:
half_head_size = attention_head_size // 2
input = qkv[0] if isinstance(qkv, list) else qkv
input_shape = shape(input)
batch_size = 1 if remove_input_padding else shape(input, 0)
seqlen = shape(input, 0 if remove_input_padding else 1)
if isinstance(qkv, list):
query, key, value = qkv
else:
qkv = qkv.view(
concat([
batch_size,
seqlen,
num_attention_heads,
3,
attention_head_size,
]))
query, key, value = split(qkv, 1, dim=3)
q_shape = concat([
batch_size,
seqlen,
num_attention_heads,
attention_head_size,
])
query = query.view(q_shape)
key = key.view(q_shape)
value = value.view(q_shape)
embedding_weight = RopeEmbeddingUtils.create_sinusoidal_positions(
max_position_embeddings, half_head_size)
embedding_weight /= rotary_embedding_scale
embedding_weight = np.split(embedding_weight.squeeze(0), 2, axis=1)
embedding_weight = np.concatenate(
[
embedding_weight[0],
embedding_weight[0],
embedding_weight[1],
embedding_weight[1],
],
axis=1,
)
if remove_input_padding:
position_embedding = unsqueeze(position_embedding, 0)
embedding_weight = embedding_weight.astype(trt_dtype_to_np(query.dtype))
embedding_weight = constant(embedding_weight)
position_embedding = embedding(position_embedding, embedding_weight)
position_embedding, block_embedding = split(
position_embedding,
1,
dim=1,
)
sin0, cos0 = split(position_embedding, half_head_size, dim=3)
sin1, cos1 = split(block_embedding, half_head_size, dim=3)
new_shape = concat([
batch_size,
seqlen,
1,
half_head_size,
])
position_embedding = [
tensor.view(new_shape) for tensor in [cos0, cos1, sin0, sin1]
]
query = RopeEmbeddingUtils.apply_rotary_pos_emb(
tensor=query,
position_embedding=position_embedding,
pos_emb_type=PositionEmbeddingType.chatglm)
key = RopeEmbeddingUtils.apply_rotary_pos_emb(
tensor=key,
position_embedding=position_embedding,
pos_emb_type=PositionEmbeddingType.chatglm)
if isinstance(qkv, list):
qkv = [
query.view(input_shape),
key.view(input_shape),
value.view(input_shape),
]
else:
qkv = concat([query, key, value], dim=2)
qkv = qkv.view(input_shape)
return qkv
def make_causal_mask(bsz, tgt_len, past_key_values_length, dtype):
_range = arange(start=constant(int32_array(0)),
end=tgt_len,
dtype=trt_dtype_to_str(dtype))
mask = repeat_interleave(_range, tgt_len, 0).view(concat([tgt_len,
tgt_len]))
mask = where(mask < mask.transpose(-1, -2), 1.0, 0.0)
zero = constant(fp32_array(0))
zero = expand_dims(zero, [0, 1])
zero = expand(zero, concat([tgt_len, past_key_values_length]))
mask = concat([zero, mask], dim=1)
mask *= np.finfo(trt_dtype_to_np(dtype)).min.item()
mask = mask.view(concat([1, 1, tgt_len, tgt_len + past_key_values_length]))
mask = expand(mask,
concat([bsz, 1, tgt_len, tgt_len + past_key_values_length]))
return mask
class AttentionParams(object):
def __init__(self,
sequence_length: Tensor = None,
context_lengths: Tensor = None,
host_context_lengths: Tensor = None,
max_context_length: int = None,
host_request_types: Tensor = None,
encoder_input_lengths: Tensor = None,
encoder_max_input_length: Tensor = None):
self.sequence_length = sequence_length
self.context_lengths = context_lengths
self.host_context_lengths = host_context_lengths
# max allowed context length. Required to
# compute scratch memory size.
self.max_context_length = max_context_length
self.host_request_types = host_request_types
self.encoder_input_lengths = encoder_input_lengths
self.encoder_max_input_length = encoder_max_input_length
def is_valid_cross_attn(self, do_cross_attention):
if do_cross_attention:
if self.encoder_input_lengths is None:
return False
if self.encoder_max_input_length is None:
return False
return True
def is_valid(self, gpt_attention_plugin, remove_input_padding):
if gpt_attention_plugin:
if self.sequence_length is None:
return False
if self.context_lengths is None:
return False
if self.host_request_types is None:
return False
if self.max_context_length is None:
return False
if remove_input_padding:
if self.host_context_lengths is None:
return False
if not gpt_attention_plugin:
return False
return True
class KeyValueCacheParams:
def __init__(self,
past_key_value: List[Tensor] = None,
host_past_key_value_lengths: Tensor = None,
host_max_attention_window_sizes: List[Tensor] = None,
host_sink_token_length: Tensor = None,
kv_cache_block_pointers: List[Tensor] = None,
host_kv_cache_block_pointers: List[Tensor] = None,
cache_indirection: Tensor = None,
past_key_value_length: Tensor = None):
self.past_key_value = past_key_value
self.host_past_key_value_lengths = host_past_key_value_lengths
self.host_max_attention_window_sizes = host_max_attention_window_sizes
self.host_sink_token_length = host_sink_token_length
self.kv_cache_block_pointers = kv_cache_block_pointers
self.host_kv_cache_block_pointers = host_kv_cache_block_pointers
self.cache_indirection = cache_indirection
# self.past_key_value_length = past_key_value_length
def get_first_past_key_value(self):
if self.past_key_value is None:
return None
return self.past_key_value[0]
def get_first_kv_cache_block_pointers(self):
if self.kv_cache_block_pointers is None:
return None
return self.kv_cache_block_pointers[0]
def get_first_host_kv_cache_block_pointers(self):
if self.host_kv_cache_block_pointers is None:
return None
return self.host_kv_cache_block_pointers[0]
def fill_none_tensor_list(self, list_size):
if self.past_key_value is None:
self.past_key_value = tuple([None] * list_size)
if self.host_max_attention_window_sizes is None:
self.host_max_attention_window_sizes = tuple([None] * list_size)
def is_valid(self, gpt_attention_plugin):
if gpt_attention_plugin:
if self.host_past_key_value_lengths is None:
return False
if self.host_max_attention_window_sizes is None:
return False
if self.host_sink_token_length is None:
return False
if self.cache_indirection is None:
return False
return True
class Attention(Module):
def __init__(
self,
hidden_size,
num_attention_heads,
num_kv_heads=None,
max_position_embeddings=1024,
num_layers=1,
apply_query_key_layer_scaling=False,
attention_head_size=None,
attention_mask_type=AttentionMaskType.padding,
bias=True,
dtype=None,
position_embedding_type=PositionEmbeddingType.learned_absolute,
rotary_embedding_base=10000.0,
rotary_embedding_scaling=None,
rotary_embedding_percentage=1.0,
tp_group=None,
tp_size=1,
tp_rank=0,
use_auto_parallel=False,
quant_mode: QuantMode = QuantMode(0),
q_scaling=1.0,
cross_attention=False,
relative_attention=False,
max_distance=0,
num_buckets=0,
dense_bias=None,
enable_pos_shift=False,
dense_context_fmha=False,
max_lora_rank=None,
clip_qkv=None,
):
super().__init__()
self.cross_attention = cross_attention
self.attention_mask_type = attention_mask_type
self.attention_head_size = hidden_size // num_attention_heads if attention_head_size is None else attention_head_size
assert num_attention_heads % tp_size == 0, \
"num_attention_heads must be divisible by tp_size"
self.num_attention_heads = num_attention_heads // tp_size
self.num_attention_kv_heads = (
num_kv_heads + tp_size - 1
) // tp_size if num_kv_heads is not None else self.num_attention_heads
self.hidden_size = hidden_size // tp_size
self.atten_head_size_all = self.attention_head_size * self.num_attention_heads
self.max_position_embeddings = max_position_embeddings
self.bias = bias
self.tp_size = tp_size
self.tp_rank = tp_rank
self.dtype = dtype
if dense_bias is None:
dense_bias = bias
self.use_auto_parallel = use_auto_parallel
self.unfuse_qkv_gemm = use_auto_parallel and not cross_attention
if self.use_auto_parallel:
assert self.tp_size == 1, "please disable manual tp when enable auto_parallel"
self.num_layers = num_layers
self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
self.norm_factor = math.sqrt(self.attention_head_size)
self.q_scaling = q_scaling
if self.apply_query_key_layer_scaling:
self.norm_factor *= self.num_layers
self.q_scaling *= self.num_layers
# Whether to scale ALiBi bias. Mathematically, it's equivalent to
# normalizing QK after adding bias.
# - False, inv_sqrt_Dh * Q*K^T + alibi_bias
# - True, inv_sqrt_Dh * Q*K^T + inv_sqrt_Dh * alibi_bias
self.scale_alibi_bias = position_embedding_type == PositionEmbeddingType.alibi_with_scale
self.position_embedding_type = position_embedding_type
self.enable_pos_shift = enable_pos_shift
self.dense_context_fmha = dense_context_fmha
self.relative_attention = relative_attention
self.max_distance = max_distance
self.rotary_embedding_base = rotary_embedding_base
self.rotary_embedding_scale_type = RotaryScalingType.none
self.rotary_embedding_scale = 1.0
if rotary_embedding_scaling is not None:
assert rotary_embedding_scaling["type"] in ["linear", "dynamic"]
self.rotary_embedding_scale_type = RotaryScalingType.linear if rotary_embedding_scaling[
"type"] == "linear" else RotaryScalingType.dynamic
self.rotary_embedding_scale = rotary_embedding_scaling["factor"]
assert self.rotary_embedding_scale > 1.0
self.embed_positions = None
self.rotary_enabled = False
self.rotary_embedding_dim = 0
if self.position_embedding_type.is_rope():
self.rotary_embedding_dim = int(self.attention_head_size *
rotary_embedding_percentage)
self.rotary_enabled = True
self.embed_positions = RopeEmbeddingUtils.create_sinusoidal_positions(
self.max_position_embeddings,
self.rotary_embedding_dim,
)
self.quant_mode = quant_mode
self.use_int8_kv_cache = self.quant_mode.has_int8_kv_cache()
if self.quant_mode.has_kv_cache_quant():
self.kv_cache_scaling_factor = Parameter(shape=(1, ),
dtype='float32')
else:
self.register_parameter('kv_cache_scaling_factor', None)
# The output feature size is therefore (h/tp + 2*kvh/tp) * d, where h is num_heads,
# d is head_size, kvh is the num_kv_heads and tp is tensor_parallel_size.
# In ColumnLinear op, the output dim is calculated by (h + 2*kvh) * d / tp,
# which matches the desired output size (h/tp + 2*kvh/tp) * d after splitting
self.use_fp8_qdq = self.quant_mode.has_fp8_qdq()
if self.use_fp8_qdq:
self.qkv = FP8Linear(
hidden_size,
tp_size * self.num_attention_heads * self.attention_head_size +
(2 * tp_size * self.num_attention_kv_heads *
self.attention_head_size),
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
gather_output=False,
max_lora_rank=max_lora_rank)
self.dense = FP8RowLinear(tp_size * self.num_attention_heads *
self.attention_head_size,
hidden_size,
bias=dense_bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
max_lora_rank=max_lora_rank)
else:
# out dim is not necessarily hidden_size + kv specific size (in MQA/GQA), but num_heads * heads_size
# example: d_model != num_heads * head_size in Flan-T5
self.qkv = ColumnLinear(
hidden_size,
tp_size * self.num_attention_heads * self.attention_head_size +
(2 * tp_size * self.num_attention_kv_heads *
self.attention_head_size),
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
gather_output=False,
max_lora_rank=max_lora_rank)
self.dense = RowLinear(tp_size * self.num_attention_heads *
self.attention_head_size,
hidden_size,
bias=dense_bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
max_lora_rank=max_lora_rank)
if self.unfuse_qkv_gemm:
self.is_weight_rewritten = False
linear_class = FP8Linear if self.use_fp8_qdq else ColumnLinear
self.q = linear_class(hidden_size,
self.atten_head_size_all,
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
gather_output=False)
self.k = linear_class(hidden_size,
tp_size * self.num_attention_kv_heads *
self.attention_head_size,
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
gather_output=False)
self.v = linear_class(hidden_size,
tp_size * self.num_attention_kv_heads *
self.attention_head_size,
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
gather_output=False)
# per-layer relative attention table
if relative_attention:
self.rel_attn_table = Parameter(shape=(num_attention_heads //
tp_size, num_buckets),
dtype=dtype)
if max_lora_rank is None:
max_lora_rank = min(
hidden_size,
self.num_attention_heads * self.attention_head_size,
self.num_attention_kv_heads * self.attention_head_size)
self.qkv_lora = Lora(
in_hidden_size=hidden_size,
out_hidden_sizes=[
self.num_attention_heads * self.attention_head_size,
self.num_attention_kv_heads * self.attention_head_size,
self.num_attention_kv_heads * self.attention_head_size
],
max_low_rank=max_lora_rank,
)
if clip_qkv is not None:
self.clip_qkv = fp32_array([clip_qkv])
else:
self.clip_qkv = None
def forward(self,
hidden_states: Tensor,
attention_mask=None,
medusa_packed_mask=None,
medusa_position_offsets=None,
use_cache=False,
kv_cache_params=None,
attention_params=None,
encoder_output: Optional[Tensor] = None,
position_embedding=None,
norm_before_bmm1=False,
lora_layer_params=None):
assert isinstance(hidden_states, Tensor)
alibi_slopes = None
if self.position_embedding_type.is_alibi():
dtype = trt.float32
if default_net().plugin_config.gpt_attention_plugin:
dtype = hidden_states.dtype
alibi_scale = 1. / self.norm_factor if self.scale_alibi_bias else 1.
alibi_slopes = generate_alibi_slopes(self.num_attention_heads *
self.tp_size,
dtype=dtype,
tp_size=self.tp_size,
tp_rank=self.tp_rank,
alibi_scale=alibi_scale)
qkv_lora_params = None
if lora_layer_params is not None:
qkv_lora_params = lora_layer_params.get_runtime_params(
0, "attn_qkv")
unfuse_qkv_gemm = self.unfuse_qkv_gemm
if unfuse_qkv_gemm:
qkv_gemm = [self.q, self.k, self.v]
if not self.is_weight_rewritten:
if self.qkv.weight.is_inited():
qkv_weight = self.qkv.weight.raw_value
weights = np.split(qkv_weight, [
self.q.out_features,
self.q.out_features + self.k.out_features,
])
for gemm, weight in zip(qkv_gemm, weights):
gemm.weight.value = weight
del self.qkv._parameters["weight"]
if self.qkv.bias is not None and self.qkv.bias.is_inited():
qkv_bias = self.qkv.bias.raw_value
biases = np.split(qkv_bias, [
self.q.out_features,
self.q.out_features + self.k.out_features,
])
for gemm, bias in zip(qkv_gemm, biases):
gemm.bias.value = bias
del self.qkv._parameters["bias"]
for name, parameter in self.qkv._parameters.items():
for gemm in qkv_gemm:
setattr(gemm, name, parameter)
del self.qkv._parameters[name]
self.is_weight_rewritten = True
qkv = [gemm(hidden_states) for gemm in qkv_gemm]
if default_net(
).plugin_config.lora_plugin and qkv_lora_params is not None:
lora = self.qkv.lora(hidden_states, qkv_lora_params)
kv_size = self.attention_head_size * self.num_attention_kv_heads
qkv_lora = split(lora,
[self.atten_head_size_all, kv_size, kv_size],
dim=1)
qkv = [tensor + lora for tensor, lora in zip(qkv, qkv_lora)]
else:
qkv = self.qkv(hidden_states, qkv_lora_params)
if self.clip_qkv is not None:
qkv = clip(qkv, -self.clip_qkv, self.clip_qkv)
if default_net().plugin_config.remove_input_padding:
if unfuse_qkv_gemm:
for tensor in qkv:
assert tensor.ndim() == 2
else:
assert qkv.ndim() == 2
if default_net(
).plugin_config.lora_plugin and qkv_lora_params is None and lora_layer_params is not None:
q_lora_params = lora_layer_params.get_runtime_params(0, "attn_q")
k_lora_params = lora_layer_params.get_runtime_params(0, "attn_k")
v_lora_params = lora_layer_params.get_runtime_params(0, "attn_v")
assert (q_lora_params is not None and k_lora_params is not None and v_lora_params is not None) or \
(q_lora_params is None and k_lora_params is None and v_lora_params is None), "q_lora_params, k_lora_params and v_lora_params should be all enabled or all disabled at the same time."
if q_lora_params is not None and k_lora_params is not None and v_lora_params is not None:
qkv_lora_params = LoraRuntimeParams(
lora_ranks=[
q_lora_params.lora_ranks[0],
k_lora_params.lora_ranks[0], v_lora_params.lora_ranks[0]
],
lora_weights_pointers=[
q_lora_params.lora_weights_pointers[0],
k_lora_params.lora_weights_pointers[0],
v_lora_params.lora_weights_pointers[0]
],
host_request_types=q_lora_params.host_request_types,
host_context_lengths=q_lora_params.host_context_lengths,
max_context_length=q_lora_params.max_context_length)
q_lora, k_lora, v_lora = self.qkv_lora(hidden_states,
qkv_lora_params)
qkv_lora = concat([q_lora, k_lora, v_lora],
dim=q_lora.rank() - 1)
qkv = qkv + qkv_lora
if self.position_embedding_type == PositionEmbeddingType.chatglm:
qkv = RopeEmbeddingUtils.apply_rotary_pos_emb_chatglm(
qkv,
position_embedding,
self.num_attention_heads,
self.attention_head_size,
self.max_position_embeddings,
self.rotary_embedding_scale,
default_net().plugin_config.remove_input_padding,
)
self.rotary_embedding_scale_type = RotaryScalingType.none
self.rotary_embedding_scale = 1.0
paged_kv_cache = default_net().plugin_config.paged_kv_cache
assert attention_params is None or attention_params.is_valid(
default_net().plugin_config.gpt_attention_plugin,
default_net().plugin_config.remove_input_padding)
assert kv_cache_params is None or kv_cache_params.is_valid(
default_net().plugin_config.gpt_attention_plugin)
past_key_value = None if kv_cache_params is None else kv_cache_params.get_first_past_key_value(
)
# if cross attention, cross QKV only needs to be calculated once in the
# 1st decoding step --> write to cross KV cache --> remains constant
# during the entire decoding. 1st and >1 steps are distinguished by
# whether past_key_value exists or not
# also, cross KV cache max length is set from encoder output seqlen,
# this maps to the max context length concept in decoder-only models
cross_qkv = None
# get length data in every run
if encoder_output:
assert isinstance(encoder_output, Tensor)
# but only do projection once at 1st decoding step
if self.cross_attention and encoder_output:
cross_qkv = self.qkv(encoder_output)
if default_net().plugin_config.gpt_attention_plugin:
if self.cross_attention and (past_key_value is not None):
past_key_value = kv_cache_params.past_key_value[1]
assert self.attention_mask_type in [
AttentionMaskType.causal, AttentionMaskType.bidirectional,
AttentionMaskType.bidirectionalglm
], 'Plugin only support masked MHA.'
kv_orig_quant_scale = constant(
fp32_array([1.0])
) / self.kv_cache_scaling_factor.value if self.quant_mode.has_kv_cache_quant(
) else None
kv_quant_orig_scale = self.kv_cache_scaling_factor.value if self.quant_mode.has_kv_cache_quant(
) else None
context, past_key_value = gpt_attention(
qkv=qkv,
past_key_value=past_key_value,
sequence_length=attention_params.sequence_length,
host_past_key_value_lengths=kv_cache_params.
host_past_key_value_lengths,
host_max_attention_window_sizes=kv_cache_params.
host_max_attention_window_sizes,
host_sink_token_length=kv_cache_params.host_sink_token_length,
context_lengths=attention_params.context_lengths,
cache_indirection=kv_cache_params.cache_indirection,
host_request_types=attention_params.host_request_types,
num_heads=self.num_attention_heads,
num_kv_heads=self.num_attention_kv_heads,
hidden_size_per_head=self.attention_head_size,
q_scaling=self.q_scaling,
rotary_embedding_dim=self.rotary_embedding_dim,
rotary_embedding_base=self.rotary_embedding_base,
rotary_embedding_scale_type=self.rotary_embedding_scale_type,
rotary_embedding_scale=self.rotary_embedding_scale,
rotary_embedding_max_positions=self.max_position_embeddings,
position_embedding_type=self.position_embedding_type,
kv_orig_quant_scale=kv_orig_quant_scale,
kv_quant_orig_scale=kv_quant_orig_scale,
kv_cache_quant_mode=self.quant_mode,
max_context_length=attention_params.max_context_length,
mask_type=self.attention_mask_type,
alibi_slopes=alibi_slopes,
tp_size=self.tp_size,
tp_rank=self.tp_rank,
kv_cache_block_pointers=kv_cache_params.
get_first_kv_cache_block_pointers(),
host_kv_cache_block_pointers=kv_cache_params.
get_first_host_kv_cache_block_pointers(),
do_cross_attention=self.cross_attention,
cross_qkv=cross_qkv,
cross_qkv_length=attention_params.encoder_max_input_length,
encoder_input_lengths=attention_params.encoder_input_lengths,
relative_attention_bias=self.rel_attn_table.value
if self.relative_attention else None,
max_distance=self.max_distance,
host_context_lengths=attention_params.host_context_lengths,
enable_pos_shift=self.enable_pos_shift,
dense_context_fmha=self.dense_context_fmha,
use_cache=use_cache,
medusa_position_offsets=medusa_position_offsets,
medusa_packed_mask=medusa_packed_mask,
)
else:
# plain TensorRT mode
assert paged_kv_cache == False
def transpose_for_scores(x,
rotary: bool = False,
is_kv: bool = False):
_num_attention_heads = self.num_attention_kv_heads if is_kv else self.num_attention_heads
new_x_shape = concat([
shape(x, 0),
shape(x, 1), _num_attention_heads, self.attention_head_size
])
if rotary:
return x.view(new_x_shape)
else:
return x.view(new_x_shape).permute([0, 2, 1, 3])
# qkv after projection is of shape
# [bs, seqlen, (num_attention_heads + 2 * num_attention_kv_heads), attention_head_size].
# The projected and split qkv after transpose_for_scores():
# Q[bs, num_attention_heads, seqlen, attention_head_size]
# K[bs, num_attention_kv_heads, seqlen, attention_head_size]
# V[bs, num_attention_kv_heads, seqlen, attention_head_size]
kv_size = self.attention_head_size * self.num_attention_kv_heads
if unfuse_qkv_gemm:
query, key, value = qkv[0], qkv[1], qkv[2]
else:
query, key, value = split(
qkv, [self.atten_head_size_all, kv_size, kv_size], dim=2)
# in cross attention mode, replace kv by encoder_output
if self.cross_attention and encoder_output is not None:
encoder_qkv = self.qkv(encoder_output)
_, key, value = split(
encoder_qkv, [self.atten_head_size_all, kv_size, kv_size],
dim=2)
query = transpose_for_scores(query, rotary=self.rotary_enabled)
key = transpose_for_scores(key,
is_kv=True,
rotary=self.rotary_enabled)
value = transpose_for_scores(value, is_kv=True)
if self.rotary_enabled:
if self.dtype == trt.bfloat16:
embed_positions = numpy_fp32_to_bf16(
self.embed_positions.astype(np.float32))
embed_positions = constant(embed_positions)
else:
embed_positions = constant(
self.embed_positions.astype(trt_dtype_to_np(
query.dtype)))
if self.rotary_embedding_dim is not None:
# When shape(hidden_states, 1) > 1(Context phase), the embedding start from 0,
# otherwise (Generation phase) move start to position
start = where(
shape(hidden_states, 1) > 1, 0,
shape(past_key_value, 3))
size = where(
shape(hidden_states, 1) > 1, shape(hidden_states, 1), 1)
sincos = slice(embed_positions, concat([0, start, 0]),
concat([1, size, self.rotary_embedding_dim]))
sin, cos = split(sincos,
self.rotary_embedding_dim // 2,
dim=-1)
key_rot_size = concat([
shape(key, 0),
shape(key, 1),
shape(key, 2), self.rotary_embedding_dim
])
query_rot_size = concat([
shape(query, 0),
shape(query, 1),
shape(query, 2), self.rotary_embedding_dim
])
remaining = shape(key, 3) - self.rotary_embedding_dim
key_pass_size = concat([
shape(key, 0),
shape(key, 1),
shape(key, 2), remaining
])
query_pass_size = concat([
shape(query, 0),
shape(query, 1),
shape(query, 2), remaining
])
k_rot = slice(key, [0, 0, 0, 0], key_rot_size)
k_pass = slice(key, [0, 0, 0, self.rotary_embedding_dim],
key_pass_size)
q_rot = slice(query, [0, 0, 0, 0], query_rot_size)
q_pass = slice(query, [0, 0, 0, self.rotary_embedding_dim],
query_pass_size)
k_rot = RopeEmbeddingUtils.apply_rotary_pos_emb(
k_rot, [cos, sin], self.position_embedding_type)
q_rot = RopeEmbeddingUtils.apply_rotary_pos_emb(
q_rot, [cos, sin], self.position_embedding_type)
key = concat([k_rot, k_pass], dim=3)
query = concat([q_rot, q_pass], dim=3)
else:
key = RopeEmbeddingUtils.apply_rotary_pos_emb(
key, [cos, sin], self.position_embedding_type)
query = RopeEmbeddingUtils.apply_rotary_pos_emb(
query, [cos, sin], self.position_embedding_type)
key = key.permute([0, 2, 1, 3])
query = query.permute([0, 2, 1, 3])
if past_key_value is not None and not self.cross_attention:
if (self.use_fp8_qdq and self.quant_mode.has_kv_cache_quant()
) or self.use_int8_kv_cache:
past_key_value = dequantize(
past_key_value, self.kv_cache_scaling_factor.value)
# past_key_value [bs, 2, num_heads, max_seq_len, head_dim]
past_key, past_value = split(past_key_value, 1, dim=1)
key_shape = concat([
shape(past_key, 0),
shape(past_key, 2),
shape(past_key, 3),
shape(past_key, 4)
])
past_key = past_key.view(key_shape, zero_is_placeholder=False)
past_value = past_value.view(key_shape,
zero_is_placeholder=False)
key = concat([past_key, key], dim=2)
value = concat([past_value, value], dim=2)
if use_cache:
key_inflated_shape = concat([
shape(key, 0), 1,
shape(key, 1),
shape(key, 2),
shape(key, 3)
])
inflated_key = key.view(key_inflated_shape,
zero_is_placeholder=False)
inflated_value = value.view(key_inflated_shape,
zero_is_placeholder=False)
past_key_value = concat([inflated_key, inflated_value], dim=1)
# TRT quantizes the tensor value by doing `cast(clip(fp_value / scale))` while
# the plugin quantizes it by doing `cast(clip(fp_value * scale))`.
if (self.use_fp8_qdq and self.quant_mode.has_kv_cache_quant()
) or self.use_int8_kv_cache:
past_key_value = quantize(
past_key_value,
self.kv_cache_scaling_factor.value,
dtype='fp8' if self.use_fp8_qdq else 'int8')
# MQA broadcast
if self.num_attention_heads // self.num_attention_kv_heads > 1:
key = repeat_interleave(
key,
self.num_attention_heads // self.num_attention_kv_heads, 1)
value = repeat_interleave(
value,
self.num_attention_heads // self.num_attention_kv_heads, 1)
key_length = shape(key, 2)
# The following code creates a 2D tensor with 0s in the lower triangular (including the diagonal) and
# +INF in the upper triangular parts. This bias tensor will be added to the output of the Q*K^T matrix
# multiplication (BMM1). The +INF elements will be transformed to 0s by the Softmax operator that
# follows. The elements that corresponds to 0s in the bias are unaffected by the bias tensor.
#
# Note that when we added to another bias tensor B (for example, with AliBi), the values in the lower-
# triangular part of the B tensor are not affected and the upper-triangular ones are set to +INF.
if self.attention_mask_type == AttentionMaskType.causal and not self.cross_attention:
if self.position_embedding_type.is_alibi():
query_length = shape(query, 2)
# bsz, tatget_length, past_key_value_length
buffer = make_causal_mask(shape(query, 0), query_length,
key_length - query_length, dtype)
starts = concat([0, 0, 0, 0])
sizes = concat([1, 1, query_length, key_length])
generated_mask = slice(buffer, starts, sizes)
else:
query_length = shape(query, 2)
starts = concat([0, 0, key_length - query_length, 0])
sizes = concat([1, 1, query_length, key_length])
select_buf = np.expand_dims(
np.tril(
np.ones(
(self.max_position_embeddings,
self.max_position_embeddings))).astype(bool),
(0, 1))
select_buf = np.logical_not(select_buf)
mask_buf = np.zeros_like(select_buf, np.float32)
mask_buf[select_buf] = float('-inf')
buffer = constant(mask_buf)
generated_mask = slice(buffer, starts, sizes)
elif self.attention_mask_type == AttentionMaskType.bidirectional and not self.cross_attention:
query_length = shape(query, 2)
zero_buf = np.expand_dims(
np.zeros((self.max_position_embeddings,
self.max_position_embeddings),
dtype=np.float32), (0, 1))
zero_buf[:, :, :-1, -1] = 1
zero_buf *= -10000