You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
If this extension is enabled in the image settings panel nothing will generate with the error TypeError: 'NoneType' object is not iterable
Is this extension not compatible with forge?
Traceback (most recent call last):
File "K:\SD Forge\webui\modules_forge\main_thread.py", line 37, in loop
task.work()
File "K:\SD Forge\webui\modules_forge\main_thread.py", line 26, in work
self.result = self.func(*self.args, **self.kwargs)
File "K:\SD Forge\webui\modules\txt2img.py", line 111, in txt2img_function
processed = processing.process_images(p)
File "K:\SD Forge\webui\modules\processing.py", line 752, in process_images
res = process_images_inner(p)
File "K:\SD Forge\webui\modules\processing.py", line 922, in process_images_inner
samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
File "K:\SD Forge\webui\modules\processing.py", line 1275, in sample
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
File "K:\SD Forge\webui\modules\sd_samplers_kdiffusion.py", line 251, in sample
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
File "K:\SD Forge\webui\modules\sd_samplers_common.py", line 263, in launch_sampling
return func()
File "K:\SD Forge\webui\modules\sd_samplers_kdiffusion.py", line 251, in <lambda>
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
File "K:\SD Forge\system\python\lib\site-packages\torch\utils\_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "K:\SD Forge\webui\repositories\k-diffusion\k_diffusion\sampling.py", line 594, in sample_dpmpp_2m
denoised = model(x, sigmas[i] * s_in, **extra_args)
File "K:\SD Forge\system\python\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "K:\SD Forge\system\python\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "K:\SD Forge\webui\modules\sd_samplers_cfg_denoiser.py", line 182, in forward
denoised = forge_sampler.forge_sample(self, denoiser_params=denoiser_params,
File "K:\SD Forge\webui\modules_forge\forge_sampler.py", line 88, in forge_sample
denoised = sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options, seed)
File "K:\SD Forge\webui\ldm_patched\modules\samplers.py", line 289, in sampling_function
cond_pred, uncond_pred = calc_cond_uncond_batch(model, cond, uncond_, x, timestep, model_options)
File "K:\SD Forge\webui\ldm_patched\modules\samplers.py", line 258, in calc_cond_uncond_batch
output = model.apply_model(input_x, timestep_, **c).chunk(batch_chunks)
File "K:\SD Forge\webui\ldm_patched\modules\model_base.py", line 90, in apply_model
model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float()
File "K:\SD Forge\system\python\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "K:\SD Forge\system\python\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "K:\SD Forge\webui\ldm_patched\ldm\modules\diffusionmodules\openaimodel.py", line 867, in forward
h = forward_timestep_embed(module, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
File "K:\SD Forge\webui\ldm_patched\ldm\modules\diffusionmodules\openaimodel.py", line 42, in forward_timestep_embed
for layer_index, layer in enumerate(ts):
TypeError: 'Scaler' object is not iterable
'Scaler' object is not iterable
*** Error completing request
*** Arguments: ('task(g4suagzxr96r7vp)', <gradio.routes.Request object at 0x00000297A945DAE0>, 'bowling ball,', '', [], 20, 'DPM++ 2M Karras', 1, 1, 7, 768, 512, False, 0.7, 2, 'Latent', 0, 0, 0, 'Use same checkpoint', 'Use same sampler', '', '', [], 0, False, '', 0.8, -1, False, -1, 0, 0, 0, 0, False, 1, False, True, True, 3, 4, 0.3, 0.3, 'nearest-exact', 0.25, 2, True, True, False, 0.75, 1, ControlNetUnit(input_mode=<InputMode.SIMPLE: 'simple'>, use_preview_as_input=False, batch_image_dir='', batch_mask_dir='', batch_input_gallery=[], batch_mask_gallery=[], generated_image=None, mask_image=None, hr_option='Both', enabled=False, module='None', model='None', weight=1, image=None, resize_mode='Crop and Resize', processor_res=-1, threshold_a=-1, threshold_b=-1, guidance_start=0, guidance_end=1, pixel_perfect=False, control_mode='Balanced', save_detected_map=True), ControlNetUnit(input_mode=<InputMode.SIMPLE: 'simple'>, use_preview_as_input=False, batch_image_dir='', batch_mask_dir='', batch_input_gallery=[], batch_mask_gallery=[], generated_image=None, mask_image=None, hr_option='Both', enabled=False, module='None', model='None', weight=1, image=None, resize_mode='Crop and Resize', processor_res=-1, threshold_a=-1, threshold_b=-1, guidance_start=0, guidance_end=1, pixel_perfect=False, control_mode='Balanced', save_detected_map=True), ControlNetUnit(input_mode=<InputMode.SIMPLE: 'simple'>, use_preview_as_input=False, batch_image_dir='', batch_mask_dir='', batch_input_gallery=[], batch_mask_gallery=[], generated_image=None, mask_image=None, hr_option='Both', enabled=False, module='None', model='None', weight=1, image=None, resize_mode='Crop and Resize', processor_res=-1, threshold_a=-1, threshold_b=-1, guidance_start=0, guidance_end=1, pixel_perfect=False, control_mode='Balanced', save_detected_map=True), False, 7, 1, 'Constant', 0, 'Constant', 0, 1, 'enable', 'MEAN', 'AD', 1, False, 1.01, 1.02, 0.99, 0.95, False, 0.5, 2, False, 256, 2, 0, False, False, 0, 'anisotropic', 0, 'reinhard', 100, 0, 'subtract', 0, 0, 'gaussian', 'add', 0, 100, 127, 0, 'hard_clamp', 5, 0, 'None', 'None', False, 'MultiDiffusion', 768, 768, 64, 4, False, False, False, False, False, 'positive', 'comma', 0, False, False, 'start', '', 1, '', [], 0, '', [], 0, '', [], True, False, False, False, False, False, False, 0, False) {}
Traceback (most recent call last):
File "K:\SD Forge\webui\modules\call_queue.py", line 57, in f
res = list(func(*args, **kwargs))
TypeError: 'NoneType' object is not iterable
---
reacted with thumbs up emoji reacted with thumbs down emoji reacted with laugh emoji reacted with hooray emoji reacted with confused emoji reacted with heart emoji reacted with rocket emoji reacted with eyes emoji
-
https://github.com/wcde/sd-webui-kohya-hiresfix
If this extension is enabled in the image settings panel nothing will generate with the error
TypeError: 'NoneType' object is not iterable
Is this extension not compatible with forge?
Beta Was this translation helpful? Give feedback.
All reactions