Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixing errors in board.py associated with deprecated tf attributes #7

Open
hermano360 opened this issue Mar 1, 2017 · 1 comment
Open

Comments

@hermano360
Copy link

hermano360 commented Mar 1, 2017

    import input_data

    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

    import tensorflow as tf

    # Set parameters
    learning_rate = 0.01
    training_iteration = 30
    batch_size = 100
    display_step = 2

    # TF graph input
    x = tf.placeholder("float", [None, 784]) # mnist data image of shape 28*28=784
    y = tf.placeholder("float", [None, 10]) # 0-9 digits recognition => 10 classes

    # Create a model

    # Set model weights
    W = tf.Variable(tf.zeros([784, 10]))
    b = tf.Variable(tf.zeros([10]))

    with tf.name_scope("Wx_b") as scope:
        # Construct a linear model
        model = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax
        
    # Add summary ops to collect data
    w_h = tf.summary.histogram("weights", W)
    b_h = tf.summary.histogram("biases", b)

    # More name scopes will clean up graph representation
    with tf.name_scope("cost_function") as scope:
        # Minimize error using cross entropy
        # Cross entropy
        cost_function = -tf.reduce_sum(y*tf.log(model))
        # Create a summary to monitor the cost function
        tf.summary.scalar("cost_function", cost_function)

    with tf.name_scope("train") as scope:
        # Gradient descent
        optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost_function)

    # Initializing the variables
    init = tf.global_variables_initializer()

    # Merge all summaries into a single operator
    merged_summary_op = tf.summary.merge_all()

    # Launch the graph
    with tf.Session() as sess:
        sess.run(init)

        
        
        # Change this to a location on your computer
        summary_writer = tf.summary.FileWriter('/LOCATION/ON/YOUR/COMPUTER/', sess.graph)

        # Training cycle
        for iteration in range(training_iteration):
            avg_cost = 0.
            total_batch = int(mnist.train.num_examples/batch_size)
            # Loop over all batches
            for i in range(total_batch):
                batch_xs, batch_ys = mnist.train.next_batch(batch_size)
                # Fit training using batch data
                sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})
                # Compute the average loss
                avg_cost += sess.run(cost_function, feed_dict={x: batch_xs, y: batch_ys})/total_batch
                # Write logs for each iteration
                summary_str = sess.run(merged_summary_op, feed_dict={x: batch_xs, y: batch_ys})
                summary_writer.add_summary(summary_str, iteration*total_batch + i)
            # Display logs per iteration step
            if iteration % display_step == 0:
                print("Iteration:", '%04d' % (iteration + 1), "cost=", "{:.9f}".format(avg_cost))

        print("Tuning completed!")

        # Test the model
        predictions = tf.equal(tf.argmax(model, 1), tf.argmax(y, 1))
        # Calculate accuracy
        accuracy = tf.reduce_mean(tf.cast(predictions, "float"))
        print("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))
@alphamupsiomega
Copy link

Does not work with Tensorflow 1.1

InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder_4' with dtype float
	 [[Node: Placeholder_4 = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]

Caused by op u'Placeholder_4', defined at:
  File "/Users/MY/anaconda/lib/python2.7/runpy.py", line 174, in _run_module_as_main
    "__main__", fname, loader, pkg_name)
  File "/Users/MY/anaconda/lib/python2.7/runpy.py", line 72, in _run_code
    exec code in run_globals
  File "/Users/MY/anaconda/lib/python2.7/site-packages/ipykernel/__main__.py", line 3, in <module>
    app.launch_new_instance()
  File "/Users/MY/anaconda/lib/python2.7/site-packages/traitlets/config/application.py", line 658, in launch_instance
    app.start()
  File "/Users/MY/anaconda/lib/python2.7/site-packages/ipykernel/kernelapp.py", line 474, in start
    ioloop.IOLoop.instance().start()
  File "/Users/MY/anaconda/lib/python2.7/site-packages/zmq/eventloop/ioloop.py", line 177, in start
    super(ZMQIOLoop, self).start()
  File "/Users/MY/anaconda/lib/python2.7/site-packages/tornado/ioloop.py", line 887, in start
    handler_func(fd_obj, events)
  File "/Users/MY/anaconda/lib/python2.7/site-packages/tornado/stack_context.py", line 275, in null_wrapper
    return fn(*args, **kwargs)
  File "/Users/MY/anaconda/lib/python2.7/site-packages/zmq/eventloop/zmqstream.py", line 440, in _handle_events
    self._handle_recv()
  File "/Users/MY/anaconda/lib/python2.7/site-packages/zmq/eventloop/zmqstream.py", line 472, in _handle_recv
    self._run_callback(callback, msg)
  File "/Users/MY/anaconda/lib/python2.7/site-packages/zmq/eventloop/zmqstream.py", line 414, in _run_callback
    callback(*args, **kwargs)
  File "/Users/MY/anaconda/lib/python2.7/site-packages/tornado/stack_context.py", line 275, in null_wrapper
    return fn(*args, **kwargs)
  File "/Users/MY/anaconda/lib/python2.7/site-packages/ipykernel/kernelbase.py", line 276, in dispatcher
    return self.dispatch_shell(stream, msg)
  File "/Users/MY/anaconda/lib/python2.7/site-packages/ipykernel/kernelbase.py", line 228, in dispatch_shell
    handler(stream, idents, msg)
  File "/Users/MY/anaconda/lib/python2.7/site-packages/ipykernel/kernelbase.py", line 390, in execute_request
    user_expressions, allow_stdin)
  File "/Users/MY/anaconda/lib/python2.7/site-packages/ipykernel/ipkernel.py", line 196, in do_execute
    res = shell.run_cell(code, store_history=store_history, silent=silent)
  File "/Users/MY/anaconda/lib/python2.7/site-packages/ipykernel/zmqshell.py", line 501, in run_cell
    return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
  File "/Users/MY/anaconda/lib/python2.7/site-packages/IPython/core/interactiveshell.py", line 2717, in run_cell
    interactivity=interactivity, compiler=compiler, result=result)
  File "/Users/MY/anaconda/lib/python2.7/site-packages/IPython/core/interactiveshell.py", line 2821, in run_ast_nodes
    if self.run_code(code, result):
  File "/Users/MY/anaconda/lib/python2.7/site-packages/IPython/core/interactiveshell.py", line 2881, in run_code
    exec(code_obj, self.user_global_ns, self.user_ns)
  File "<ipython-input-7-b93adf5d2e29>", line 7, in <module>
    x = tf.placeholder('float', [None, 28*28])
  File "/Users/MY/anaconda/lib/python2.7/site-packages/tensorflow/python/ops/array_ops.py", line 1507, in placeholder
    name=name)
  File "/Users/MY/anaconda/lib/python2.7/site-packages/tensorflow/python/ops/gen_array_ops.py", line 1997, in _placeholder
    name=name)
  File "/Users/MY/anaconda/lib/python2.7/site-packages/tensorflow/python/framework/op_def_library.py", line 768, in apply_op
    op_def=op_def)
  File "/Users/MY/anaconda/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 2336, in create_op
    original_op=self._default_original_op, op_def=op_def)
  File "/Users/MY/anaconda/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1228, in __init__
    self._traceback = _extract_stack()

InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'Placeholder_4' with dtype float
	 [[Node: Placeholder_4 = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant