forked from AmusementClub/vs-mlrt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvs_openvino.cpp
813 lines (653 loc) · 25.3 KB
/
vs_openvino.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
#include <array>
#include <cstdint>
#include <map>
#include <memory>
#include <mutex>
#include <optional>
#include <shared_mutex>
#include <sstream>
#include <string>
#include <string_view>
#include <thread>
#include <unordered_map>
#include <unordered_set>
#include <variant>
#include <vector>
#include <VapourSynth.h>
#include <VSHelper.h>
#include <onnx/common/version.h>
#include <onnx/onnx_pb.h>
#include <ie_core.hpp>
#include <openvino/pass/constant_folding.hpp>
#ifdef ENABLE_VISUALIZATION
#include <openvino/pass/visualize_tree.hpp>
#endif // ENABLE_VISUALIZATION
#include "config.h"
extern std::variant<std::string, ONNX_NAMESPACE::ModelProto> loadONNX(
const std::string_view & path,
int64_t tile_w,
int64_t tile_h,
bool path_is_serialization
) noexcept;
extern void convert_float_to_float16(
ONNX_NAMESPACE::ModelProto & model,
bool force_fp16_initializers,
const std::unordered_set<std::string> & op_block_list
) noexcept;
using namespace std::string_literals;
static const VSPlugin * myself = nullptr;
static std::array<int, 4> getShape(
const InferenceEngine::ExecutableNetwork & network,
bool input
) {
InferenceEngine::SizeVector dims;
if (input) {
dims = network.GetInputsInfo().cbegin()->second->getTensorDesc().getDims();
} else {
dims = network.GetOutputsInfo().cbegin()->second->getTensorDesc().getDims();
}
std::array<int, 4> ret;
for (unsigned i = 0; i < std::size(ret); ++i) {
ret[i] = static_cast<int>(dims[i]);
}
return ret;
}
static int numPlanes(
const std::vector<const VSVideoInfo *> & vis
) {
int num_planes = 0;
for (const auto & vi : vis) {
num_planes += vi->format->numPlanes;
}
return num_planes;
}
[[nodiscard]]
static std::optional<std::string> checkNodes(
const std::vector<const VSVideoInfo *> & vis
) {
for (const auto & vi : vis) {
if (vi->format->sampleType != stFloat || vi->format->bitsPerSample != 32) {
return "expects clip with type fp32";
}
if (vi->width != vis[0]->width || vi->height != vis[0]->height) {
return "dimensions of clips mismatch";
}
if (vi->numFrames != vis[0]->numFrames) {
return "number of frames mismatch";
}
if (vi->format->subSamplingH != 0 || vi->format->subSamplingW != 0) {
return "clip must not be sub-sampled";
}
}
return {};
}
template <typename T>
[[nodiscard]]
static std::optional<std::string> checkIOInfo(
const T & info,
bool is_output
) {
if (info->getPrecision() != InferenceEngine::Precision::FP32) {
return "expects network IO with type fp32";
}
const auto & desc = info->getTensorDesc();
if (desc.getLayout() != InferenceEngine::Layout::NCHW) {
return "expects network IO with layout NCHW";
}
const auto & dims = desc.getDims();
if (dims.size() != 4) {
return "expects network with 4-D IO";
}
if (dims[0] != 1) {
return "batch size of network must be 1";
}
if (is_output) {
auto out_channels = dims[1];
if (out_channels != 1 && out_channels != 3) {
return "output dimensions must be 1 or 3";
}
}
return {};
}
[[nodiscard]]
static std::optional<std::string> checkNetwork(
const InferenceEngine::CNNNetwork & network
) {
const auto & inputs_info = network.getInputsInfo();
if (auto num_inputs = std::size(inputs_info); num_inputs != 1) {
return "network input count must be 1, got " + std::to_string(num_inputs);
}
const auto & input_info = inputs_info.cbegin()->second;
if (auto err = checkIOInfo(input_info, false); err.has_value()) {
return err.value();
}
const auto & outputs_info = network.getOutputsInfo();
if (auto num_outputs = std::size(outputs_info); num_outputs != 1) {
return "network output count must be 1, got " + std::to_string(num_outputs);
}
const auto & output_info = outputs_info.cbegin()->second;
if (auto err = checkIOInfo(output_info, true); err.has_value()) {
return err.value();
}
return {};
}
[[nodiscard]]
static std::optional<std::string> checkNodesAndNetwork(
const InferenceEngine::ExecutableNetwork & network,
const std::vector<const VSVideoInfo *> & vis
) {
const auto & network_in_dims = (
network.GetInputsInfo().cbegin()->second->getTensorDesc().getDims()
);
int network_in_channels = static_cast<int>(network_in_dims[1]);
int num_planes = numPlanes(vis);
if (network_in_channels != num_planes) {
return "expects " + std::to_string(network_in_channels) + " input planes";
}
auto network_in_height = static_cast<int>(network_in_dims[2]);
auto network_in_width = static_cast<int>(network_in_dims[3]);
auto clip_in_height = vis.front()->height;
auto clip_in_width = vis.front()->width;
if (network_in_height > clip_in_height || network_in_width > clip_in_width) {
return "tile size larger than clip dimension";
}
return {};
}
static void setDimensions(
std::unique_ptr<VSVideoInfo> & vi,
const InferenceEngine::ExecutableNetwork & network,
VSCore * core,
const VSAPI * vsapi
) {
auto in_dims = network.GetInputsInfo().cbegin()->second->getTensorDesc().getDims();
auto out_dims = network.GetOutputsInfo().cbegin()->second->getTensorDesc().getDims();
vi->height *= out_dims[2] / in_dims[2];
vi->width *= out_dims[3] / in_dims[3];
if (out_dims[1] == 1) {
vi->format = vsapi->registerFormat(cmGray, stFloat, 32, 0, 0, core);
} else if (out_dims[1] == 3) {
vi->format = vsapi->registerFormat(cmRGB, stFloat, 32, 0, 0, core);
}
}
static std::variant<std::string, std::map<std::string, std::string>> getConfig(
VSFuncRef * config_func,
VSCore * core,
const VSAPI * vsapi
) {
std::map<std::string, std::string> config;
if (config_func == nullptr) {
return config;
}
auto in_map = vsapi->createMap();
auto out_map = vsapi->createMap();
auto set_error = [&](const std::string & error_message) -> std::string {
vsapi->freeMap(out_map);
vsapi->freeMap(in_map);
return error_message;
};
vsapi->callFunc(config_func, in_map, out_map, core, vsapi);
if (auto error_message = vsapi->getError(out_map); error_message) {
return set_error(error_message);
}
int num_keys { vsapi->propNumKeys(out_map) };
for (int index = 0; index < num_keys; index++) {
auto key = vsapi->propGetKey(out_map, index);
auto num_elements { vsapi->propNumElements(out_map, key) };
if (num_elements != 1) {
return set_error("each value in the \"config\" dict must have exactly one element");
}
auto type = vsapi->propGetType(out_map, key);
if (type == ptData) {
config[key] = vsapi->propGetData(out_map, key, 0, nullptr);
} else if (type == ptInt) {
config[key] = std::to_string(vsapi->propGetInt(out_map, key, 0, nullptr));
} else if (type == ptFloat) {
config[key] = std::to_string(vsapi->propGetFloat(out_map, key, 0, nullptr));
} else {
return set_error("unknown type of key \""s + key + "\": (" + type + ")");
}
}
vsapi->freeMap(out_map);
vsapi->freeMap(in_map);
return config;
}
struct OVData {
std::vector<VSNodeRef *> nodes;
std::unique_ptr<VSVideoInfo> out_vi;
int overlap_w, overlap_h;
InferenceEngine::Core core;
InferenceEngine::ExecutableNetwork executable_network;
std::unordered_map<std::thread::id, InferenceEngine::InferRequest> infer_requests;
std::shared_mutex infer_requests_lock;
std::string input_name;
std::string output_name;
};
static void VS_CC vsOvInit(
VSMap *in,
VSMap *out,
void **instanceData,
VSNode *node,
VSCore *core,
const VSAPI *vsapi
) {
OVData * d = static_cast<OVData *>(*instanceData);
vsapi->setVideoInfo(d->out_vi.get(), 1, node);
}
static const VSFrameRef *VS_CC vsOvGetFrame(
int n,
int activationReason,
void **instanceData,
void **frameData,
VSFrameContext *frameCtx,
VSCore *core,
const VSAPI *vsapi
) {
OVData * d = static_cast<OVData *>(*instanceData);
if (activationReason == arInitial) {
for (const auto & node : d->nodes) {
vsapi->requestFrameFilter(n, node, frameCtx);
}
} else if (activationReason == arAllFramesReady) {
std::vector<const VSVideoInfo *> in_vis;
in_vis.reserve(std::size(d->nodes));
for (const auto & node : d->nodes) {
in_vis.emplace_back(vsapi->getVideoInfo(node));
}
std::vector<const VSFrameRef *> src_frames;
src_frames.reserve(std::size(d->nodes));
for (const auto & node : d->nodes) {
src_frames.emplace_back(vsapi->getFrameFilter(n, node, frameCtx));
}
auto src_stride = vsapi->getStride(src_frames.front(), 0);
auto src_width = vsapi->getFrameWidth(src_frames.front(), 0);
auto src_height = vsapi->getFrameHeight(src_frames.front(), 0);
auto src_bytes = vsapi->getFrameFormat(src_frames.front())->bytesPerSample;
auto src_tile_shape = getShape(d->executable_network, true);
auto src_tile_h = src_tile_shape[2];
auto src_tile_w = src_tile_shape[3];
auto src_tile_w_bytes = src_tile_w * src_bytes;
auto src_tile_bytes = src_tile_h * src_tile_w_bytes;
std::vector<const uint8_t *> src_ptrs;
src_ptrs.reserve(src_tile_shape[1]);
for (unsigned i = 0; i < std::size(d->nodes); ++i) {
for (int j = 0; j < in_vis[i]->format->numPlanes; ++j) {
src_ptrs.emplace_back(vsapi->getReadPtr(src_frames[i], j));
}
}
auto step_w = src_tile_w - 2 * d->overlap_w;
auto step_h = src_tile_h - 2 * d->overlap_h;
VSFrameRef * const dst_frame = vsapi->newVideoFrame(
d->out_vi->format, d->out_vi->width, d->out_vi->height,
src_frames.front(), core
);
auto dst_stride = vsapi->getStride(dst_frame, 0);
auto dst_bytes = vsapi->getFrameFormat(dst_frame)->bytesPerSample;
auto dst_tile_shape = getShape(d->executable_network, false);
auto dst_tile_h = dst_tile_shape[2];
auto dst_tile_w = dst_tile_shape[3];
auto dst_tile_w_bytes = dst_tile_w * dst_bytes;
auto dst_tile_bytes = dst_tile_h * dst_tile_w_bytes;
auto dst_planes = dst_tile_shape[1];
std::array<uint8_t *, 3> dst_ptrs {};
for (int i = 0; i < dst_planes; ++i) {
dst_ptrs[i] = vsapi->getWritePtr(dst_frame, i);
}
auto h_scale = dst_tile_h / src_tile_h;
auto w_scale = dst_tile_w / src_tile_w;
const auto set_error = [&](const std::string & error_message) {
vsapi->setFilterError(
(__func__ + ": "s + error_message).c_str(),
frameCtx
);
vsapi->freeFrame(dst_frame);
for (const auto & frame : src_frames) {
vsapi->freeFrame(frame);
}
return nullptr;
};
auto thread_id = std::this_thread::get_id();
bool initialized = true;
InferenceEngine::InferRequest * infer_request;
d->infer_requests_lock.lock_shared();
try {
infer_request = &d->infer_requests.at(thread_id);
} catch (const std::out_of_range &) {
initialized = false;
}
d->infer_requests_lock.unlock_shared();
if (!initialized) {
std::lock_guard _ { d->infer_requests_lock };
try {
d->infer_requests.emplace(thread_id, d->executable_network.CreateInferRequest());
} catch (const InferenceEngine::Exception& e) {
return set_error("[IE exception] Create inference request: "s + e.what());
} catch (const std::exception& e) {
return set_error("[Standard exception] Create inference request: "s + e.what());
}
infer_request = &d->infer_requests[thread_id];
}
int y = 0;
while (true) {
int y_crop_start = (y == 0) ? 0 : d->overlap_h;
int y_crop_end = (y == src_height - src_tile_h) ? 0 : d->overlap_h;
int x = 0;
while (true) {
int x_crop_start = (x == 0) ? 0 : d->overlap_w;
int x_crop_end = (x == src_width - src_tile_w) ? 0 : d->overlap_w;
{
InferenceEngine::Blob::Ptr input = infer_request->GetBlob(d->input_name);
auto minput = input->as<InferenceEngine::MemoryBlob>();
auto minputHolder = minput->wmap();
uint8_t * input_buffer = minputHolder.as<uint8_t *>();
for (const auto & _src_ptr : src_ptrs) {
const uint8_t * src_ptr { _src_ptr +
y * src_stride + x * src_bytes
};
vs_bitblt(
input_buffer, src_tile_w_bytes,
src_ptr, src_stride,
src_tile_w_bytes, src_tile_h
);
input_buffer += src_tile_bytes;
}
}
try {
infer_request->Infer();
} catch (const InferenceEngine::Exception & e) {
return set_error("[IE exception] Create inference request: "s + e.what());
} catch (const std::exception& e) {
return set_error("[Standard exception] Create inference request: "s + e.what());
}
{
InferenceEngine::Blob::CPtr output = infer_request->GetBlob(d->output_name);
auto moutput = output->as<const InferenceEngine::MemoryBlob>();
auto moutputHolder = moutput->rmap();
const uint8_t * output_buffer = moutputHolder.as<const uint8_t *>();
for (int plane = 0; plane < dst_planes; ++plane) {
uint8_t * dst_ptr = (dst_ptrs[plane] +
h_scale * y * dst_stride + w_scale * x * dst_bytes
);
vs_bitblt(
dst_ptr + (y_crop_start * dst_stride + x_crop_start * dst_bytes),
dst_stride,
output_buffer + (y_crop_start * dst_tile_w_bytes + x_crop_start * dst_bytes),
dst_tile_w_bytes,
dst_tile_w_bytes - (x_crop_start + x_crop_end) * dst_bytes,
dst_tile_h - (y_crop_start + y_crop_end)
);
output_buffer += dst_tile_bytes;
}
}
if (x + src_tile_w == src_width) {
break;
}
x = std::min(x + step_w, src_width - src_tile_w);
}
if (y + src_tile_h == src_height) {
break;
}
y = std::min(y + step_h, src_height - src_tile_h);
}
for (const auto & frame : src_frames) {
vsapi->freeFrame(frame);
}
return dst_frame;
}
return nullptr;
}
static void VS_CC vsOvFree(
void *instanceData,
VSCore *core,
const VSAPI *vsapi
) {
OVData * d = static_cast<OVData *>(instanceData);
for (const auto & node : d->nodes) {
vsapi->freeNode(node);
}
delete d;
}
static void VS_CC vsOvCreate(
const VSMap *in,
VSMap *out,
void *userData,
VSCore *core,
const VSAPI *vsapi
) {
std::unique_ptr<OVData> d = nullptr;
try {
d = std::make_unique<OVData>();
} catch (const InferenceEngine::Exception& e) {
vsapi->setError(out, ("[IE exception] Initialize inference engine: "s + e.what()).c_str());
return ;
} catch (const std::exception& e) {
vsapi->setError(out, ("[Standard exception] Initialize inference engine: "s + e.what()).c_str());
return ;
}
int num_nodes = vsapi->propNumElements(in, "clips");
d->nodes.reserve(num_nodes);
for (int i = 0; i < num_nodes; ++i) {
d->nodes.emplace_back(vsapi->propGetNode(in, "clips", i, nullptr));
}
const auto set_error = [&](const std::string & error_message) {
vsapi->setError(out, (__func__ + ": "s + error_message).c_str());
for (const auto & node : d->nodes) {
vsapi->freeNode(node);
}
};
std::vector<const VSVideoInfo *> in_vis;
in_vis.reserve(std::size(d->nodes));
for (const auto & node : d->nodes) {
in_vis.emplace_back(vsapi->getVideoInfo(node));
}
if (auto err = checkNodes(in_vis); err.has_value()) {
return set_error(err.value());
}
d->out_vi = std::make_unique<VSVideoInfo>(*in_vis.front()); // mutable
int error;
const char * device = vsapi->propGetData(in, "device", 0, &error);
if (error) {
device = "CPU";
}
int error1, error2;
d->overlap_w = int64ToIntS(vsapi->propGetInt(in, "overlap", 0, &error1));
d->overlap_h = int64ToIntS(vsapi->propGetInt(in, "overlap", 1, &error2));
if (!error1) {
if (error2) {
d->overlap_h = d->overlap_w;
}
if (d->overlap_w < 0 || d->overlap_h < 0) {
return set_error("\"overlap\" must be non-negative");
}
} else {
d->overlap_w = 0;
d->overlap_h = 0;
}
size_t tile_w = static_cast<size_t>(vsapi->propGetInt(in, "tilesize", 0, &error1));
size_t tile_h = static_cast<size_t>(vsapi->propGetInt(in, "tilesize", 1, &error2));
if (!error1) { // manual specification triggered
if (error2) {
tile_h = tile_w;
}
} else {
if (d->overlap_w != 0 || d->overlap_h != 0) {
return set_error("\"tilesize\" must be specified");
}
// set tile size to video dimensions
tile_w = in_vis.front()->width;
tile_h = in_vis.front()->height;
}
if (tile_w - 2 * d->overlap_w <= 0 || tile_h - 2 * d->overlap_h <= 0) {
return set_error("\"overlap\" too large");
}
bool fp16 = !!vsapi->propGetInt(in, "fp16", 0, &error);
if (error) {
fp16 = false;
}
bool path_is_serialization = !!vsapi->propGetInt(in, "path_is_serialization", 0, &error);
if (error) {
path_is_serialization = false;
}
std::string_view path_view;
std::string path;
if (path_is_serialization) {
path_view = {
vsapi->propGetData(in, "network_path", 0, nullptr),
static_cast<size_t>(vsapi->propGetDataSize(in, "network_path", 0, nullptr))
};
} else {
path = vsapi->propGetData(in, "network_path", 0, nullptr);
bool builtin = !!vsapi->propGetInt(in, "builtin", 0, &error);
if (builtin) {
const char *modeldir = vsapi->propGetData(in, "builtindir", 0, &error);
if (!modeldir) modeldir = "models";
path = std::string(modeldir) + "/" + path;
std::string dir { vsapi->getPluginPath(myself) };
dir = dir.substr(0, dir.rfind('/') + 1);
path = dir + path;
}
path_view = path;
}
auto result = loadONNX(path_view, tile_w, tile_h, path_is_serialization);
if (std::holds_alternative<std::string>(result)) {
return set_error(std::get<std::string>(result));
}
auto onnx_model = std::move(std::get<ONNX_NAMESPACE::ModelProto>(result));
if (fp16) {
std::unordered_set<std::string> fp16_blacklist_ops;
int num = vsapi->propNumElements(in, "fp16_blacklist_ops");
if (num == -1) {
fp16_blacklist_ops = {
"ArrayFeatureExtractor", "Binarizer", "CastMap", "CategoryMapper",
"DictVectorizer", "FeatureVectorizer", "Imputer", "LabelEncoder",
"LinearClassifier", "LinearRegressor", "Normalizer", "OneHotEncoder",
"SVMClassifier", "SVMRegressor", "Scaler", "TreeEnsembleClassifier",
"TreeEnsembleRegressor", "ZipMap", "NonMaxSuppression", "TopK",
"RoiAlign", "Range", "CumSum", "Min", "Max"
};
} else {
for (int i = 0; i < num; i++) {
fp16_blacklist_ops.emplace(vsapi->propGetData(in, "fp16_blacklist_ops", i, nullptr));
}
}
convert_float_to_float16(onnx_model, false, fp16_blacklist_ops);
}
std::string onnx_data = onnx_model.SerializeAsString();
if (std::size(onnx_data) == 0) {
return set_error("proto serialization failed");
}
{
InferenceEngine::CNNNetwork network;
try {
auto empty = InferenceEngine::Blob::CPtr();
network = d->core.ReadNetwork(onnx_data, empty);
} catch (const InferenceEngine::Exception& e) {
return set_error("[IE exception] ReadNetwork(): "s + e.what());
} catch (const std::exception& e) {
return set_error("[Standard exception] ReadNetwork(): "s + e.what());
}
if (auto err = checkNetwork(network); err.has_value()) {
return set_error(err.value());
}
auto function = network.getFunction(); // mutable
try {
ov::pass::ConstantFolding().run_on_function(function);
} catch (const ov::Exception & e) {
return set_error(e.what());
}
#ifdef ENABLE_VISUALIZATION
const char * dot_path = vsapi->propGetData(in, "dot_path", 0, &error);
if (!error) {
try {
ov::pass::VisualizeTree(dot_path, nullptr, true).run_on_function(function);
} catch (const ov::Exception & e) {
return set_error(e.what());
}
}
#endif // ENABLE_VISUALIZATION
auto config_func = vsapi->propGetFunc(in, "config", 0, &error);
auto config_ret = getConfig(config_func, core, vsapi);
vsapi->freeFunc(config_func);
if (std::holds_alternative<std::string>(config_ret)) {
return set_error(std::get<std::string>(config_ret));
}
auto & config = std::get<std::map<std::string, std::string>>(config_ret);
try {
d->executable_network = d->core.LoadNetwork(network, device, config);
} catch (const InferenceEngine::Exception & e) {
return set_error(e.what());
}
if (auto err = checkNodesAndNetwork(d->executable_network, in_vis); err.has_value()) {
return set_error(err.value());
}
setDimensions(d->out_vi, d->executable_network, core, vsapi);
d->input_name = d->executable_network.GetInputsInfo().cbegin()->first;
d->output_name = d->executable_network.GetOutputsInfo().cbegin()->first;
VSCoreInfo core_info;
vsapi->getCoreInfo2(core, &core_info);
d->infer_requests.reserve(core_info.numThreads);
}
vsapi->createFilter(
in, out, "Model",
vsOvInit, vsOvGetFrame, vsOvFree,
fmParallel, 0, d.release(), core
);
}
VS_EXTERNAL_API(void) VapourSynthPluginInit(
VSConfigPlugin configFunc,
VSRegisterFunction registerFunc,
VSPlugin *plugin
) {
myself = plugin;
configFunc(
"io.github.amusementclub.vs_openvino", "ov", "OpenVINO ML Filter Runtime",
VAPOURSYNTH_API_VERSION, 1, plugin
);
registerFunc("Model",
"clips:clip[];"
"network_path:data;"
"overlap:int[]:opt;"
"tilesize:int[]:opt;"
"device:data:opt;" // "CPU": CPU
"builtin:int:opt;"
"builtindir:data:opt;"
"fp16:int:opt;"
"config:func:opt;"
"path_is_serialization:int:opt;"
"fp16_blacklist_ops:data[]:opt;"
#ifdef ENABLE_VISUALIZATION
"dot_path:data:opt;"
#endif
, vsOvCreate,
nullptr,
plugin
);
auto getVersion = [](const VSMap *, VSMap * out, void *, VSCore *, const VSAPI *vsapi) {
vsapi->propSetData(out, "version", VERSION, -1, paReplace);
std::ostringstream ostream;
ostream << IE_VERSION_MAJOR << '.' << IE_VERSION_MINOR << '.' << IE_VERSION_PATCH;
vsapi->propSetData(out, "inference_engine_version", ostream.str().c_str(), -1, paReplace);
vsapi->propSetData(
out, "onnx_version",
ONNX_NAMESPACE::LAST_RELEASE_VERSION, -1, paReplace
);
#ifdef ENABLE_VISUALIZATION
vsapi->propSetInt(out, "enable_visualization", 1, paReplace);
#endif // ENABLE_VISUALIZATION
vsapi->propSetData(out, "path", vsapi->getPluginPath(myself), -1, paReplace);
};
registerFunc("Version", "", getVersion, nullptr, plugin);
auto availableDevices = [](const VSMap *, VSMap * out, void *, VSCore *, const VSAPI *vsapi) {
try {
auto core = InferenceEngine::Core();
auto devices = core.GetAvailableDevices();
for (const auto & device : devices) {
vsapi->propSetData(out, "devices", device.c_str(), -1, paAppend);
}
} catch (const InferenceEngine::Exception& e) {
vsapi->setError(out, ("[IE exception] Initialize inference engine: "s + e.what()).c_str());
} catch (const std::exception& e) {
vsapi->setError(out, ("[Standard exception] Initialize inference engine: "s + e.what()).c_str());
}
};
registerFunc("AvailableDevices", "", availableDevices, nullptr, plugin);
}