forked from computational-imaging/nlos-fk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cnlos_reconstruction.m
277 lines (228 loc) · 9.56 KB
/
cnlos_reconstruction.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
function result = cnlos_reconstruction(meas, tofgrid, wall_size, alg, crop, bin_resolution)
% Reconstruction procedures for "Confocal Non-Line-of-Sight Imaging Based on the Light Cone Transform"
% by Matthew O'Toole, David B. Lindell, and Gordon Wetzstein.
% and for "Wave-Based Non-Line-of-Sight Imaging using Fast f-k Migration"
% by David B. Lindell, Matthew O'Toole, and Gordon Wetzstein.
%
% Usage/Parameters:
% cnlos_reconstruction(meas, tofgrid, wall_size, alg)
% meas: measurements provided from the data files for each scene
% tofgrid: time-of-flight delays in picoseconds provided by the associated
% datafiles for each scene. Pass in an empty array if data is
% already corrected.
% wall_size: size of scanned wall along one dimension (assumes
% identical horizontal, vertical scanned dimensions)
% alg == 0 : FBP
% alg == 1 : LCT
% alg == 2 : f-k migration
% alg == 3 : phasor fields
% crop: optional argument, bin index to crop measurements after correcting
% for time-of-flight delays
% Constants
c = 3e8; % Speed of light (meters per second)
width = wall_size / 2;
if ~exist('crop', 'var') % bin index to crop measurements after aligning
crop = 512; % so that direct component is at t=0
end
if ~exist('bin_resolution', 'var')
bin_resolution = 32e-12; % temporal bin resolution of measurements
end
% Parameters
isdiffuse = 1; % Toggle diffuse reflection (LCT only)
isbackproj = 0; % Toggle backprojection vs LCT (LCT/phasor fields only)
if alg == 0 || alg == 3
isbackproj = 1;
end
snr = 1e-1; % SNR value (LCT only)
% adjust so that t=0 is when light reaches the scan surface
if ~isempty(tofgrid)
for ii = 1:size(meas, 1)
for jj = 1:size(meas,2 )
meas(ii, jj, :) = circshift(meas(ii, jj, :), [0, 0, -floor(tofgrid(ii, jj) / (bin_resolution*1e12))]);
end
end
end
meas = meas(:, :, 1:crop);
N = size(meas,1); % Spatial resolution of data
M = size(meas,3); % Temporal resolution of data
range = M.*c.*bin_resolution; % Maximum range for histogram
% Permute data dimensions
data = permute(meas,[3 2 1]);
% Define volume representing voxel distance from wall
grid_z = repmat(linspace(0,1,M)',[1 N N]);
display('Inverting...');
tic;
if (alg == 2) % f-k migration
[z,y,x] = ndgrid(-M:M-1,-N:N-1,-N:N-1);
z = z./M; y = y./N; x = x./N;
% Step 0: Pad data
data = data .* grid_z.^2;
data = sqrt(data);
tdata = zeros(2.*M,2.*N,2.*N);
tdata(1:end./2,1:end./2,1:end./2) = data;
% Step 1: FFT
tdata = fftshift(fftn(tdata));
% Step 2: Stolt trick
tvol = interpn(z,y,x,tdata,sqrt(abs((((N.*range)./(M.*width.*4)).^2).*(x.^2+y.^2)+z.^2)),y,x,'linear',0);
tvol = tvol.*(z > 0);
tvol = tvol.*abs(z)./max(sqrt(abs((((N.*range)./(M.*width.*4)).^2).*(x.^2+y.^2)+z.^2)),1e-6);
% Step 3: IFFT
tvol = ifftn(ifftshift(tvol));
tvol = abs(tvol).^2;
vol = abs(tvol(1:end./2,1:end./2,1:end./2));
elseif (alg == 0 || alg == 1) % backprojection or LCT
% Define NLOS blur kernel
psf = definePsf(N,M,width./range);
% Compute inverse filter of NLOS blur kernel
fpsf = fftn(psf);
if isbackproj
invpsf = conj(fpsf);
else
invpsf = conj(fpsf) ./ (abs(fpsf).^2 + 1./snr);
end
% Define transform operators
[mtx,mtxi] = resamplingOperator(M);
mtx = full(mtx);
mtxi = full(mtxi);
% Step 1: Scale radiometric component
if (isdiffuse)
data = data.*(grid_z.^4);
else
data = data.*(grid_z.^2);
end
% Step 2: Resample time axis and pad result
tdata = zeros(2.*M,2.*N,2.*N);
tdata(1:end./2,1:end./2,1:end./2) = reshape(mtx*data(:,:),[M N N]);
% Step 3: Convolve with inverse filter and unpad result
tvol = ifftn(fftn(tdata).*invpsf);
tvol = tvol(1:end./2,1:end./2,1:end./2);
% Step 4: Resample depth axis and clamp results
vol = reshape(mtxi*tvol(:,:),[M N N]);
vol = max(real(vol),0);
if isbackproj
% apply laplacian of gaussian filter
vol = filterLaplacian(vol);
% normalize, apply optional threshold
vol = max(vol./max(vol(:)),0);
end
elseif (alg == 3) % phasor fields
% Define backprojection blur kernel
psf = definePsf(N,M,width./range);
% Compute psf for backprojection
bp_psf = conj(fftn(psf));
% Define transform operators
[mtx,mtxi] = resamplingOperator(M);
mtx = full(mtx);
mtxi = full(mtxi);
% Step 0: define virtual wavelet properties
s_lamda_limit = wall_size/(N - 1); % sample spacing on the wall
sampling_coeff = 2; % scale the size of the virtual wavelength (usually 2, optionally 3 for noisy scenes)
virtual_wavelength = sampling_coeff * (s_lamda_limit * 2); % virtual wavelength in units of cm
cycles = 5; % number of wave cycles in the wavelet, typically 4-6
% Step 1: convolve measurement volume with virtual wave
[phasor_data_cos, phasor_data_sin] = waveconv(bin_resolution, virtual_wavelength, cycles, data);
phasor_data_cos = single(phasor_data_cos);
phasor_data_sin = single(phasor_data_sin);
% Step 2: transform virtual wavefield into LCT domain
phasor_tdata_cos = single(zeros(2.*M,2.*N,2.*N));
phasor_tdata_sin = single(zeros(2.*M,2.*N,2.*N));
phasor_tdata_cos(1:end./2,1:end./2,1:end./2) = reshape(mtx*phasor_data_cos(:,:),[M N N]);
phasor_tdata_sin(1:end./2,1:end./2,1:end./2) = reshape(mtx*phasor_data_sin(:,:),[M N N]);
% Step 3: convolve with backprojection kernel
tvol_phasorbp_sin = ifftn(fftn(phasor_tdata_sin).*bp_psf);
tvol_phasorbp_sin = tvol_phasorbp_sin(1:end./2,1:end./2,1:end./2);
phasor_tdata_cos = ifftn(fftn(phasor_tdata_cos).*bp_psf);
phasor_tdata_cos = phasor_tdata_cos(1:end./2,1:end./2,1:end./2);
% Step 4: compute phasor field magnitude and inverse LCT
tvol = sqrt(tvol_phasorbp_sin.^2 + phasor_tdata_cos.^2);
vol = reshape(mtxi*tvol(:,:),[M N N]);
vol = max(real(vol),0);
end
display('... done.');
time_elapsed = toc;
display(sprintf(['Reconstructed volume of size %d x %d x %d '...
'in %f seconds'], size(vol,3),size(vol,2),size(vol,1),time_elapsed));
tic_z = linspace(0,range./2,size(vol,1));
tic_y = linspace(width,-width,size(vol,2));
tic_x = linspace(width,-width,size(vol,3));
% clip artifacts at boundary, rearrange for visualization
vol(end-10:end, :, :) = 0;
vol = permute(vol, [1, 3, 2]);
result = permute(vol, [2, 3, 1]);
vol = flip(vol, 2);
vol = flip(vol, 3);
% View result
figure
subplot(1,3,1);
imagesc(tic_x,tic_y,squeeze(max(vol,[],1)));
title('Front view');
set(gca,'XTick',linspace(min(tic_x),max(tic_x),3));
set(gca,'YTick',linspace(min(tic_y),max(tic_y),3));
xlabel('x (m)');
ylabel('y (m)');
colormap('gray');
axis square;
subplot(1,3,2);
imagesc(tic_x,tic_z,squeeze(max(vol,[],2)));
title('Top view');
set(gca,'XTick',linspace(min(tic_x),max(tic_x),3));
set(gca,'YTick',linspace(min(tic_z),max(tic_z),3));
xlabel('x (m)');
ylabel('z (m)');
colormap('gray');
axis square;
subplot(1,3,3);
imagesc(tic_z,tic_y,squeeze(max(vol,[],3))')
title('Side view');
set(gca,'XTick',linspace(min(tic_z),max(tic_z),3));
set(gca,'YTick',linspace(min(tic_y),max(tic_y),3));
xlabel('z (m)');
ylabel('y (m)');
colormap('gray');
axis square;
drawnow;
end
function psf = definePsf(U,V,slope)
% Local function to compute NLOS blur kernel
x = linspace(-1,1,2.*U);
y = linspace(-1,1,2.*U);
z = linspace(0,2,2.*V);
[grid_z,grid_y,grid_x] = ndgrid(z,y,x);
% Define PSF
psf = abs(((4.*slope).^2).*(grid_x.^2 + grid_y.^2) - grid_z);
psf = double(psf == repmat(min(psf,[],1),[2.*V 1 1]));
psf = psf./sum(psf(:,U,U));
psf = psf./norm(psf(:));
psf = circshift(psf,[0 U U]);
end
function [mtx,mtxi] = resamplingOperator(M)
% Local function that defines resampling operators
mtx = sparse([],[],[],M.^2,M,M.^2);
x = 1:M.^2;
mtx(sub2ind(size(mtx),x,ceil(sqrt(x)))) = 1;
mtx = spdiags(1./sqrt(x)',0,M.^2,M.^2)*mtx;
mtxi = mtx';
K = log(M)./log(2);
for k = 1:round(K)
mtx = 0.5.*(mtx(1:2:end,:) + mtx(2:2:end,:));
mtxi = 0.5.*(mtxi(:,1:2:end) + mtxi(:,2:2:end));
end
end
function out = filterLaplacian(vol)
% set filter parameters
hsize = 5;
std1 = 1;
% calculate filter weights
lim = (hsize - 1) / 2;
std2 = std1^2;
[x,y,z] = ndgrid(-lim:lim,-lim:lim, -lim:lim);
w = exp(-(x.*x + y.*y + z.*z)/(2*std2));
w(w < eps * max(w(:))) = 0;
sumw = sum(w(:));
if sumw ~= 0
w = w/sumw;
end;
w1 = w.*(x.*x + y.*y + z.*z - 3*std2)/(std2^2);
w = w1 - sum(w1(:))/hsize^3; % make the filter sum to zero
out = convn(vol, w, 'same');
end