forked from trackreco/mkFit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEvent.cc
1201 lines (1010 loc) · 35.7 KB
/
Event.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "Event.h"
#include "Simulation.h"
#include "KalmanUtils.h"
#include "seedtest.h"
#include "buildtest.h"
#include "fittest.h"
#include "ConformalUtils.h"
#include "TrackerInfo.h"
//#define DEBUG
#include "Debug.h"
#ifdef TBB
#include "tbb/parallel_for.h"
#endif
#include <memory>
namespace
{
mkfit::Geometry dummyGeometry;
std::unique_ptr<mkfit::Validation> dummyValidation( mkfit::Validation::make_validation("dummy") );
}
namespace mkfit {
std::mutex Event::printmutex;
inline bool sortByPhi(const Hit& hit1, const Hit& hit2)
{
return hit1.phi()<hit2.phi();
}
static bool tracksByPhi(const Track& t1, const Track& t2)
{
return t1.posPhi()<t2.posPhi();
}
inline bool sortByEta(const Hit& hit1, const Hit& hit2){
return hit1.eta()<hit2.eta();
}
// within a layer with a "reasonable" geometry, ordering by Z is the same as eta
inline bool sortByZ(const Hit& hit1, const Hit& hit2){
return hit1.z()<hit2.z();
}
void Event::reset_nan_n_silly_counters()
{
nan_n_silly_per_layer_count_ = 0;
}
Event::Event(int evtID) :
geom_(dummyGeometry), validation_(*dummyValidation),
evtID_(evtID), mcHitIDCounter_(0)
{
reset_nan_n_silly_counters();
layerHits_.resize(Config::nTotalLayers);
layerHitMasks_.resize(Config::nTotalLayers);
}
Event::Event(const Geometry& g, Validation& v, int evtID) :
geom_(g), validation_(v),
evtID_(evtID), mcHitIDCounter_(0)
{
reset_nan_n_silly_counters();
layerHits_.resize(Config::nTotalLayers);
layerHitMasks_.resize(Config::nTotalLayers);
validation_.resetValidationMaps(); // need to reset maps for every event.
}
void Event::Reset(int evtID)
{
evtID_ = evtID;
mcHitIDCounter_ = 0;
reset_nan_n_silly_counters();
for (auto&& l : layerHits_) { l.clear(); }
for (auto&& l : layerHitMasks_) { l.clear(); }
simHitsInfo_.clear();
simTrackStates_.clear();
simTracks_.clear();
simTracksExtra_.clear();
seedTracks_.clear();
seedTracksExtra_.clear();
candidateTracks_.clear();
candidateTracksExtra_.clear();
fitTracks_.clear();
fitTracksExtra_.clear();
cmsswTracks_.clear();
cmsswTracksExtra_.clear();
validation_.resetValidationMaps(); // need to reset maps for every event.
}
void Event::RemapHits(TrackVec & tracks)
{
std::unordered_map<int,int> simHitMap;
int max_layer = Config::nTotalLayers;
for (int ilayer = 0; ilayer < max_layer; ++ilayer)
{
const auto & hit_vec = layerHits_[ilayer];
const auto size = hit_vec.size();
for (size_t index = 0; index < size; ++index)
{
simHitMap[hit_vec[index].mcHitID()] = index;
}
}
for (auto&& track : tracks)
{
for (int i = 0; i < track.nTotalHits(); ++i)
{
int hitidx = track.getHitIdx(i);
int hitlyr = track.getHitLyr(i);
if (hitidx >= 0)
{
track.setHitIdx(i, simHitMap[layerHits_[hitlyr][hitidx].mcHitID()]);
}
}
}
}
void Event::Simulate()
{
simTracks_.resize(Config::nTracks);
simHitsInfo_.reserve(Config::nAvgSimHits * Config::nTracks);
simTrackStates_.reserve(Config::nAvgSimHits * Config::nTracks);
for (auto&& l : layerHits_) {
l.clear();
l.reserve(Config::nTracks);
}
for (auto&& l : layerHitMasks_) {
l.clear();
l.reserve(Config::nTracks);
}
#ifdef TBB
parallel_for( tbb::blocked_range<size_t>(0, Config::nTracks, 100),
[&](const tbb::blocked_range<size_t>& itracks) {
const Geometry tmpgeom(geom_.clone()); // USolids isn't thread safe??
for (auto itrack = itracks.begin(); itrack != itracks.end(); ++itrack) {
#else
const Geometry& tmpgeom(geom_);
for (int itrack=0; itrack<Config::nTracks; ++itrack) {
#endif
//create the simulated track
SVector3 pos;
SVector3 mom;
SMatrixSym66 covtrk;
HitVec hits;
MCHitInfoVec hitinfos;
TSVec initialTSs;
// int starting_layer = 0; --> for displaced tracks, may want to consider running a separate Simulate() block with extra parameters
int q=0;//set it in setup function
// do the simulation
setupTrackByToyMC(pos,mom,covtrk,hits,hitinfos,*this,itrack,q,tmpgeom,initialTSs);
// convert from global cartesian to CCS
float pt = sqrt(mom[0]*mom[0]+mom[1]*mom[1]);
mom=SVector3(1./pt,atan2(mom[1],mom[0]),atan2(pt,mom[2]));
for (size_t its = 0; its < initialTSs.size(); its++){
initialTSs[its].convertFromCartesianToCCS();
}
// MT: I'm putting in a mutex for now ...
std::lock_guard<std::mutex> lock(mcGatherMutex_);
simTracks_[itrack] = Track(q,pos,mom,covtrk,0.0f);
auto& sim_track = simTracks_[itrack];
sim_track.setLabel(itrack);
// XXKM4MT
// Sorta assumes one hit per layer.
// This really would only matter for validation and seeding...
// Could imagine making an inherited class for sim tracks that keeps tracks overlaps
assert(hits.size() == hitinfos.size());
for (size_t i = 0; i < hits.size(); ++i)
{
// set to the correct hit index after sorting
sim_track.addHitIdx(layerHits_[hitinfos[i].layer_].size(), hitinfos[i].layer_, 0.0f);
layerHits_[hitinfos[i].layer_].emplace_back(hits[i]);
layerHitMasks_[hitinfos[i].layer_].emplace_back(0);//keep in sync, even if not used
simHitsInfo_.emplace_back(hitinfos[i]);
if (Config::sim_val || Config::fit_val)
{
simTrackStates_.emplace_back(initialTSs[i]);
}
}
}
#ifdef TBB
});
#endif
// do some work to ensure everything is aligned after multithreading
std::unordered_map<int,int> mcHitIDMap;
for (size_t ihit = 0; ihit < simHitsInfo_.size(); ihit++)
{
mcHitIDMap[simHitsInfo_[ihit].mcHitID()] = ihit;
}
std::sort(simHitsInfo_.begin(), simHitsInfo_.end(),
[](const MCHitInfo& a, const MCHitInfo& b)
{ return a.mcHitID() < b.mcHitID(); });
TSVec tmpTSVec(simTrackStates_.size());
for (size_t its = 0; its < simTrackStates_.size(); its++)
{
tmpTSVec[its] = simTrackStates_[mcHitIDMap[its]];
}
simTrackStates_.swap(tmpTSVec);
}
void Event::Segment(BinInfoMap & segmentMap)
{
#ifdef DEBUG
bool debug=true;
#endif
segmentMap.resize(Config::nTotalLayers);
//sort in phi and dump hits per layer, fill phi partitioning
for (size_t ilayer=0; ilayer<layerHits_.size(); ++ilayer) {
dprint("Hits in layer=" << ilayer);
segmentMap[ilayer].resize(Config::nEtaPart);
// eta first then phi
std::sort(layerHits_[ilayer].begin(), layerHits_[ilayer].end(), sortByZ);
std::vector<int> lay_eta_bin_count(Config::nEtaPart);
for (size_t ihit=0;ihit<layerHits_[ilayer].size();++ihit) {
int etabin = getEtaPartition(layerHits_[ilayer][ihit].eta());
dprint("ihit: " << ihit << " eta: " << layerHits_[ilayer][ihit].eta() << " etabin: " << etabin);
lay_eta_bin_count[etabin]++;
}
//now set index and size in partitioning map and then sort the bin by phi
int lastEtaIdxFound = -1;
int lastPhiIdxFound = -1;
for (int etabin=0; etabin<Config::nEtaPart; ++etabin) {
int firstEtaBinIdx = lastEtaIdxFound+1;
int etaBinSize = lay_eta_bin_count[etabin];
if (etaBinSize>0){
lastEtaIdxFound+=etaBinSize;
}
//sort by phi in each "eta bin"
std::sort(layerHits_[ilayer].begin() + firstEtaBinIdx,layerHits_[ilayer].begin() + (etaBinSize+firstEtaBinIdx), sortByPhi); // sort from first to last in eta
std::vector<int> lay_eta_phi_bin_count(Config::nPhiPart);
for(int ihit = firstEtaBinIdx; ihit < etaBinSize+firstEtaBinIdx; ++ihit){
dprint("ihit: " << ihit << " r(layer): " << layerHits_[ilayer][ihit].r() << "(" << ilayer << ") phi: "
<< layerHits_[ilayer][ihit].phi() << " phipart: " << getPhiPartition(layerHits_[ilayer][ihit].phi()) << " eta: "
<< layerHits_[ilayer][ihit].eta() << " etapart: " << getEtaPartition(layerHits_[ilayer][ihit].eta()));
int phibin = getPhiPartition(layerHits_[ilayer][ihit].phi());
lay_eta_phi_bin_count[phibin]++;
}
for (int phibin=0; phibin<Config::nPhiPart; ++phibin) {
int firstPhiBinIdx = lastPhiIdxFound+1;
int phiBinSize = lay_eta_phi_bin_count[phibin];
BinInfo phiBinInfo(firstPhiBinIdx,phiBinSize);
segmentMap[ilayer][etabin].push_back(phiBinInfo);
if (phiBinSize>0){
lastPhiIdxFound+=phiBinSize;
}
#ifdef DEBUG
if ((debug) && (phiBinSize !=0)) dprintf("ilayer: %1u etabin: %1u phibin: %2u first: %2u last: %2u \n",
ilayer, etabin, phibin,
segmentMap[ilayer][etabin][phibin].first,
segmentMap[ilayer][etabin][phibin].second+segmentMap[ilayer][etabin][phibin].first
);
#endif
} // end loop over storing phi index
} // end loop over storing eta index
} // end loop over layers
#ifdef DEBUG
for (int ilayer = 0; ilayer < Config::nLayers; ilayer++) {
dmutex_guard;
int etahitstotal = 0;
for (int etabin = 0; etabin < Config::nEtaPart; etabin++){
int etahits = segmentMap[ilayer][etabin][Config::nPhiPart-1].first + segmentMap[ilayer][etabin][Config::nPhiPart-1].second - segmentMap[ilayer][etabin][0].first;
std::cout << "etabin: " << etabin << " hits in bin: " << etahits << std::endl;
etahitstotal += etahits;
for (int phibin = 0; phibin < Config::nPhiPart; phibin++){
// if (segmentMap[ilayer][etabin][phibin].second > 3) {std::cout << " phibin: " << phibin << " hits: " << segmentMap[ilayer][etabin][phibin].second << std::endl;}
}
}
std::cout << "layer: " << ilayer << " totalhits: " << etahitstotal << std::endl;
}
#endif
// need to reset simtrack hit indices after sorting!
RemapHits(simTracks_);
}
void Event::Seed(const BinInfoMap & segmentMap)
{
#ifdef ENDTOEND
buildSeedsByRoadSearch(seedTracks_,seedTracksExtra_,layerHits_,segmentMap,*this);
// buildSeedsByRoadTriplets(seedTracks_,seedTracksExtra_,layerHits_,segmentMap,*this);
//buildSeedsByRZFirstRPhiSecond(seedTracks_,seedTracksExtra_,layerHits_,segmentMap,*this);
#else
buildSeedsByMC(simTracks_,seedTracks_,seedTracksExtra_,*this);
simTracksExtra_ = seedTracksExtra_;
#endif
std::sort(seedTracks_.begin(), seedTracks_.end(), tracksByPhi);
validation_.alignTracks(seedTracks_,seedTracksExtra_,true); // if we sort here, also have to sort seedTracksExtra and redo labels.
}
void Event::Find(const BinInfoMap & segmentMap)
{
buildTracksBySeeds(segmentMap,*this);
// buildTracksByLayers(segmentMap,*this);
// From CHEP-2015
// buildTestSerial(*this, Config::nlayers_per_seed, Config::maxCandsPerSeed, Config::chi2Cut, Config::nSigma, Config::minDPhi);
}
void Event::Fit()
{
fitTracks_.resize(candidateTracks_.size());
fitTracksExtra_.resize(candidateTracks_.size());
#ifdef ENDTOEND
runFittingTest(*this, candidateTracks_, candidateTracksExtra_);
#else
runFittingTest(*this, simTracks_, simTracksExtra_);
#endif
}
void Event::Validate()
{
// special map needed for sim_val_for_cmssw + set the track scores
if (Config::sim_val_for_cmssw) {
validation_.makeRecoTkToSeedTkMapsDumbCMSSW(*this);
validation_.setTrackScoresDumbCMSSW(*this);
}
// standard eff/fr/dr validation
if (Config::sim_val || Config::sim_val_for_cmssw) {
validation_.setTrackExtras(*this);
validation_.makeSimTkToRecoTksMaps(*this);
validation_.makeSeedTkToRecoTkMaps(*this);
validation_.fillEfficiencyTree(*this);
validation_.fillFakeRateTree(*this);
}
// special cmssw to mkfit validation
if (Config::cmssw_val) {
validation_.makeCMSSWTkToSeedTkMap(*this);
validation_.makeRecoTkToRecoTkMaps(*this);
validation_.setTrackExtras(*this);
validation_.makeCMSSWTkToRecoTksMaps(*this);
validation_.fillCMSSWEfficiencyTree(*this);
validation_.fillCMSSWFakeRateTree(*this);
}
if (Config::fit_val) { // fit val for z-phi tuning
validation_.fillFitTree(*this);
}
}
void Event::PrintStats(const TrackVec& trks, TrackExtraVec& trkextras)
{
int miss(0), found(0), fp_10(0), fp_20(0), hit8(0), h8_10(0), h8_20(0);
for (auto&& trk : trks) {
auto&& extra = trkextras[trk.label()];
extra.setMCTrackIDInfo(trk, layerHits_, simHitsInfo_, simTracks_, false, true);
if (extra.mcTrackID() < 0) {
++miss;
} else {
auto&& mctrk = simTracks_[extra.mcTrackID()];
auto pr = trk.pT()/mctrk.pT();
found++;
bool h8 = trk.nFoundHits() >= 8;
bool pt10 = pr > 0.9 && pr < 1.1;
bool pt20 = pr > 0.8 && pr < 1.2;
fp_10 += pt10;
fp_20 += pt20;
hit8 += h8;
h8_10 += h8 && pt10;
h8_20 += h8 && pt20;
}
}
std::cout << "found tracks=" << found << " in pT 10%=" << fp_10 << " in pT 20%=" << fp_20 << " no_mc_assoc="<< miss <<std::endl
<< " nH >= 8 =" << hit8 << " in pT 10%=" << h8_10 << " in pT 20%=" << h8_20 << std::endl;
}
void Event::write_out(DataFile &data_file)
{
FILE *fp = data_file.f_fp;
static std::mutex writemutex;
std::lock_guard<std::mutex> writelock(writemutex);
auto start = ftell(fp);
int evsize = sizeof(int);
fwrite(&evsize, sizeof(int), 1, fp); // this will be overwritten at the end
evsize += write_tracks(fp, simTracks_);
if (data_file.HasSimTrackStates()) {
int nts = simTrackStates_.size();
fwrite(&nts, sizeof(int), 1, fp);
fwrite(&simTrackStates_[0], sizeof(TrackState), nts, fp);
evsize += sizeof(int) + nts*sizeof(TrackState);
}
int nl = layerHits_.size();
fwrite(&nl, sizeof(int), 1, fp);
evsize += sizeof(int);
for (int il = 0; il<nl; ++il) {
int nh = layerHits_[il].size();
fwrite(&nh, sizeof(int), 1, fp);
fwrite(&layerHits_[il][0], sizeof(Hit), nh, fp);
evsize += sizeof(int) + nh*sizeof(Hit);
}
if (data_file.HasHitIterMasks()) {
//sizes are the same as in layerHits_
for (int il = 0; il<nl; ++il) {
int nh = layerHitMasks_[il].size();
assert(nh == (int) layerHits_[il].size());
fwrite(&layerHitMasks_[il][0], sizeof(uint64_t), nh, fp);
evsize += nh*sizeof(uint64_t);
}
}
int nm = simHitsInfo_.size();
fwrite(&nm, sizeof(int), 1, fp);
fwrite(&simHitsInfo_[0], sizeof(MCHitInfo), nm, fp);
evsize += sizeof(int) + nm*sizeof(MCHitInfo);
if (data_file.HasSeeds()) {
evsize += write_tracks(fp, seedTracks_);
}
if (data_file.HasCmsswTracks()) {
evsize += write_tracks(fp, cmsswTracks_);
}
fseek(fp, start, SEEK_SET);
fwrite(&evsize, sizeof(int), 1, fp);
fseek(fp, 0, SEEK_END);
//layerHitMap_ is recreated afterwards
/*
printf("write %i tracks\n",nt);
for (int it = 0; it<nt; it++) {
printf("track with pT=%5.3f\n",simTracks_[it].pT());
for (int ih=0; ih<simTracks_[it].nTotalHits(); ++ih) {
printf("hit lyr:%2d idx=%i\n", simTracks_[it].getHitLyr(ih), simTracks_[it].getHitIdx(ih));
}
}
printf("write %i layers\n",nl);
for (int il = 0; il<nl; il++) {
printf("write %i hits in layer %i\n",layerHits_[il].size(),il);
for (int ih = 0; ih<layerHits_[il].size(); ih++) {
printf("hit with r=%5.3f x=%5.3f y=%5.3f z=%5.3f\n",layerHits_[il][ih].r(),layerHits_[il][ih].x(),layerHits_[il][ih].y(),layerHits_[il][ih].z());
}
}
*/
}
// #define DUMP_SEEDS
// #define DUMP_SEED_HITS
// #define DUMP_TRACKS
// #define DUMP_TRACK_HITS
// #define DUMP_LAYER_HITS
// #define DUMP_REC_TRACKS
// #define DUMP_REC_TRACK_HITS
void Event::read_in(DataFile &data_file, FILE *in_fp)
{
FILE *fp = in_fp ? in_fp : data_file.f_fp;
data_file.AdvancePosToNextEvent(fp);
int nt = read_tracks(fp, simTracks_);
Config::nTracks = nt;
if (data_file.HasSimTrackStates())
{
int nts;
fread(&nts, sizeof(int), 1, fp);
simTrackStates_.resize(nts);
fread(&simTrackStates_[0], sizeof(TrackState), nts, fp);
}
int nl;
fread(&nl, sizeof(int), 1, fp);
layerHits_.resize(nl);
layerHitMasks_.resize(nl);
for (int il = 0; il<nl; ++il) {
int nh;
fread(&nh, sizeof(int), 1, fp);
layerHits_[il].resize(nh);
layerHitMasks_[il].resize(nh, 0);//init to 0 by default
fread(&layerHits_[il][0], sizeof(Hit), nh, fp);
}
if (data_file.HasHitIterMasks())
{
for (int il = 0; il<nl; ++il) {
int nh = layerHits_[il].size();
fread(&layerHitMasks_[il][0], sizeof(uint64_t), nh, fp);
}
}
int nm;
fread(&nm, sizeof(int), 1, fp);
simHitsInfo_.resize(nm);
fread(&simHitsInfo_[0], sizeof(MCHitInfo), nm, fp);
if (data_file.HasSeeds()) {
int ns = read_tracks(fp, seedTracks_, Config::seedInput != cmsswSeeds);
(void) ns;
#ifdef DUMP_SEEDS
printf("Read %i seedtracks (neg value means actual reading was skipped)\n", ns);
for (int it = 0; it < ns; it++)
{
const Track& ss = seedTracks_[it];
printf(" %3i q=%+i pT=%7.3f eta=% 7.3f nHits=%i label=% i\n",
it,ss.charge(),ss.pT(),ss.momEta(),ss.nFoundHits(),ss.label());
#ifdef DUMP_SEED_HITS
for (int ih = 0; ih < seedTracks_[it].nTotalHits(); ++ih)
{
int lyr = seedTracks_[it].getHitLyr(ih);
int idx = seedTracks_[it].getHitIdx(ih);
if (idx >= 0)
{
const Hit &hit = layerHits_[lyr][idx];
printf(" hit %2d lyr=%3d idx=%4d pos r=%7.3f z=% 8.3f mc_hit=%3d mc_trk=%3d\n",
ih, lyr, idx, layerHits_[lyr][idx].r(), layerHits_[lyr][idx].z(),
hit.mcHitID(), hit.mcTrackID(simHitsInfo_));
}
else
printf(" hit %2d idx=%i\n",ih,seedTracks_[it].getHitIdx(ih));
}
#endif
}
#endif
}
int nert = -99999;
if (data_file.HasCmsswTracks())
{
nert = read_tracks(fp, cmsswTracks_, ! Config::readCmsswTracks);
(void) nert;
}
/*
// HACK TO ONLY SELECT ONE PROBLEMATIC TRACK.
// Note that MC matching gets screwed.
// Works for MC seeding.
//
printf("************** SIM SELECTION HACK IN FORCE ********************\n");
TrackVec x;
x.push_back(simTracks_[3]);
simTracks_.swap(x);
nt = 1;
*/
#ifdef DUMP_TRACKS
printf("Read %i simtracks\n", nt);
for (int it = 0; it < nt; it++)
{
const Track &t = simTracks_[it];
printf(" %3i q=%+i pT=%7.3f eta=% 7.3f nHits=%2d label=%4d\n",
it, t.charge(), t.pT(), t.momEta(), t.nFoundHits(), t.label());
#ifdef DUMP_TRACK_HITS
for (int ih = 0; ih < t.nTotalHits(); ++ih)
{
int lyr = t.getHitLyr(ih);
int idx = t.getHitIdx(ih);
if (idx >= 0)
{
const Hit &hit = layerHits_[lyr][idx];
printf(" hit %2d lyr=%2d idx=%3d pos r=%7.3f x=% 8.3f y=% 8.3f z=% 8.3f mc_hit=%3d mc_trk=%3d\n",
ih, lyr, idx, layerHits_[lyr][idx].r(), layerHits_[lyr][idx].x(), layerHits_[lyr][idx].y(), layerHits_[lyr][idx].z(),
hit.mcHitID(), hit.mcTrackID(simHitsInfo_));
}
else
printf(" hit %2d idx=%i\n", ih, t.getHitIdx(ih));
}
#endif
}
#endif
#ifdef DUMP_LAYER_HITS
printf("Read %i layers\n",nl);
int total_hits = 0;
for (int il = 0; il < nl; il++)
{
if (layerHits_[il].empty()) continue;
printf("Read %i hits in layer %i\n", (int) layerHits_[il].size(), il);
total_hits += layerHits_[il].size();
for (int ih = 0; ih < (int) layerHits_[il].size(); ih++)
{
const Hit &hit = layerHits_[il][ih];
printf(" mcHitID=%5d r=%10g x=%10g y=%10g z=%10g sx=%10.4g sy=%10.4e sz=%10.4e\n",
hit.mcHitID(), hit.r(), hit.x(), hit.y(), hit.z(),
std::sqrt(hit.exx()), std::sqrt(hit.eyy()), std::sqrt(hit.ezz()));
}
}
printf("Total hits in all layers = %d\n", total_hits);
#endif
#ifdef DUMP_REC_TRACKS
printf("Read %i rectracks\n", nert);
for (int it = 0; it < nert; it++)
{
const Track &t = cmsswTracks_[it];
printf(" %i with q=%+i pT=%7.3f eta=% 7.3f nHits=%2d label=%4d\n",
it, t.charge(), t.pT(), t.momEta(), t.nFoundHits(), t.label());
#ifdef DUMP_REC_TRACK_HITS
for (int ih = 0; ih < t.nTotalHits(); ++ih)
{
int lyr = t.getHitLyr(ih);
int idx = t.getHitIdx(ih);
if (idx >= 0)
{
const Hit &hit = layerHits_[lyr][idx];
printf(" hit %2d lyr=%2d idx=%3d pos r=%7.3f z=% 8.3f mc_hit=%3d mc_trk=%3d\n",
ih, lyr, idx, hit.r(), hit.z(),
hit.mcHitID(), hit.mcTrackID(simHitsInfo_));
}
else
printf(" hit %2d idx=%i\n", ih, t.getHitIdx(ih));
}
#endif
}
#endif
if (Config::kludgeCmsHitErrors)
{
kludge_cms_hit_errors();
}
if (!Config::silent) printf("Read complete, %d simtracks on file.\n", nt);
}
//------------------------------------------------------------------------------
int Event::write_tracks(FILE *fp, const TrackVec& tracks)
{
// Returns total number of bytes written.
int n_tracks = tracks.size();
fwrite(&n_tracks, sizeof(int), 1, fp);
auto start = ftell(fp);
int data_size = 2 * sizeof(int) + n_tracks * sizeof(Track);
fwrite(&data_size, sizeof(int), 1, fp);
fwrite(tracks.data(), sizeof(Track), n_tracks, fp);
for (int i = 0; i < n_tracks; ++i)
{
fwrite(tracks[i].BeginHitsOnTrack(), sizeof(HitOnTrack), tracks[i].nTotalHits(), fp);
data_size += tracks[i].nTotalHits() * sizeof(HitOnTrack);
}
fseek(fp, start, SEEK_SET);
fwrite(&data_size, sizeof(int), 1, fp);
fseek(fp, 0, SEEK_END);
return data_size;
}
int Event::read_tracks(FILE *fp, TrackVec& tracks, bool skip_reading)
{
// Returns number of read tracks (negative if actual reading was skipped).
int n_tracks, data_size;
fread(&n_tracks, sizeof(int), 1, fp);
fread(&data_size, sizeof(int), 1, fp);
if (skip_reading)
{
fseek(fp, data_size, SEEK_CUR);
n_tracks = -n_tracks;
}
else
{
tracks.resize(n_tracks);
fread(tracks.data(), sizeof(Track), n_tracks, fp);
for (int i = 0; i < n_tracks; ++i)
{
tracks[i].resizeHitsForInput();
fread(tracks[i].BeginHitsOnTrack_nc(), sizeof(HitOnTrack), tracks[i].nTotalHits(), fp);
}
}
return n_tracks;
}
//------------------------------------------------------------------------------
void Event::setInputFromCMSSW(std::vector<HitVec> hits, TrackVec seeds)
{
layerHits_ = std::move(hits);
seedTracks_ = std::move(seeds);
}
//------------------------------------------------------------------------------
void Event::kludge_cms_hit_errors()
{
// Enforce Vxy on all layers, Vz on pixb only.
const float Exy = 15 * 1e-4, Vxy = Exy * Exy;
const float Ez = 30 * 1e-4, Vz = Ez * Ez;
int nl = layerHits_.size();
int cnt = 0;
for (int il = 0; il < nl; il++)
{
if (layerHits_[il].empty()) continue;
for (Hit & h : layerHits_[il])
{
SVector6 &c = h.error_nc();
float vxy = c[0] + c[2];
if (vxy < Vxy)
{
c[0] *= Vxy / vxy;
c[2] *= Vxy / vxy;
++cnt;
}
if (il < 4 && c[5] < Vz)
{
c[5] = Vz;
++cnt;
}
}
}
printf("Event::kludge_cms_hit_errors processed %d layers, kludged %d entries.\n", nl, cnt);
}
//------------------------------------------------------------------------------
int Event::clean_cms_simtracks()
{
// Sim tracks from cmssw have the following issues:
// - hits are not sorted by layer;
// - there are tracks with too low number of hits, even 0;
// - even with enough hits, there can be too few layers (esp. in endcap);
// - tracks from secondaries can have extremely low pT.
// Possible further checks:
// - make sure enough hits exist in seeding layers.
//
// What is done:
// 1. Hits are sorted by layer;
// 2. Non-findable tracks are marked with Track::Status::not_findable flag.
//
// Returns number of passed simtracks.
dprintf("Event::clean_cms_simtracks processing %d simtracks.\n", simTracks_.size());
int n_acc = 0;
int i = -1;//wrap in ifdef DEBUG?
for (Track & t : simTracks_)
{
i++;
t.sortHitsByLayer();
const int lyr_cnt = t.nUniqueLayers();
//const int lasthit = t.getLastFoundHitPos();
//const float eta = layerHits_[t.getHitLyr(lasthit)][t.getHitIdx(lasthit)].eta();
if (lyr_cnt < Config::cmsSelMinLayers) // || Config::TrkInfo.is_transition(eta))
{
dprintf("Rejecting simtrack %d, n_hits=%d, n_layers=%d, pT=%f\n", i, t.nFoundHits(), lyr_cnt, t.pT());
t.setNotFindable();
}
else
{
dprintf("Accepting simtrack %d, n_hits=%d, n_layers=%d, pT=%f\n", i, t.nFoundHits(), lyr_cnt, t.pT());
++n_acc;
}
}
return n_acc;
}
void Event::print_tracks(const TrackVec& tracks, bool print_hits) const
{
const int nt = tracks.size();
//WARNING: Printouts for hits will not make any sense if mkFit is not run with a validation flag such as --quality-val
printf("Event::print_tracks printing %d tracks %s hits:\n", nt, (print_hits ? "with" : "without"));
for (int it = 0; it < nt; it++)
{
const Track &t = tracks[it];
printf(" %i with q=%+i pT=%7.3f eta=% 7.3f nHits=%2d label=%4d findable=%d score=%7.3f chi2=%7.3f\n",
it, t.charge(), t.pT(), t.momEta(), t.nFoundHits(), t.label(), t.isFindable(), getScoreCand(t), t.chi2());
if (print_hits)
{
for (int ih = 0; ih < t.nTotalHits(); ++ih)
{
int lyr = t.getHitLyr(ih);
int idx = t.getHitIdx(ih);
if (idx >= 0)
{
const Hit &hit = layerHits_[lyr][idx];
printf(" hit %2d lyr=%2d idx=%3d pos r=%7.3f z=% 8.3f mc_hit=%3d mc_trk=%3d\n",
ih, lyr, idx, layerHits_[lyr][idx].r(), layerHits_[lyr][idx].z(),
hit.mcHitID(), hit.mcTrackID(simHitsInfo_));
}
else
printf(" hit %2d lyr=%2d idx=%3d\n", ih, t.getHitLyr(ih), t.getHitIdx(ih));
}
}
}
}
int Event::clean_cms_seedtracks()
{
const float etamax_brl = Config::c_etamax_brl;
const float dpt_brl_0 = Config::c_dpt_brl_0;
const float dpt_ec_0 = Config::c_dpt_ec_0;
const float ptmax_0 = Config::c_ptmax_0;
const float dpt_1 = Config::c_dpt_1;
const float ptmax_1 = Config::c_ptmax_1;
const float dpt_2 = Config::c_dpt_2;
const float ptmax_2 = Config::c_ptmax_2;
const float dpt_3 = Config::c_dpt_3;
const float dzmax_brl = Config::c_dzmax_brl;
const float drmax_brl = Config::c_drmax_brl;
const float ptmin_hpt = Config::c_ptmin_hpt;
const float dzmax_hpt = Config::c_dzmax_hpt;
const float drmax_hpt = Config::c_drmax_hpt;
const float dzmax_els = Config::c_dzmax_els;
const float drmax_els = Config::c_drmax_els;
const float dzmax2_brl = dzmax_brl*dzmax_brl;
const float drmax2_brl = drmax_brl*drmax_brl;
const float dzmax2_hpt = dzmax_hpt*dzmax_hpt;
const float drmax2_hpt = drmax_hpt*drmax_hpt;
const float dzmax2_els = dzmax_els*dzmax_els;
const float drmax2_els = drmax_els*drmax_els;
const int ns = seedTracks_.size();
TrackVec cleanSeedTracks;
cleanSeedTracks.reserve(ns);
std::vector<bool> writetrack(ns, true);
const float invR1GeV = 1.f/Config::track1GeVradius;
std::vector<int> nHits(ns);
std::vector<int> charge(ns);
std::vector<float> oldPhi(ns);
std::vector<float> pos2(ns);
std::vector<float> eta(ns);
std::vector<float> theta(ns);
std::vector<float> invptq(ns);
std::vector<float> pt(ns);
std::vector<float> x(ns);
std::vector<float> y(ns);
std::vector<float> z(ns);
for(int ts=0; ts<ns; ts++){
const Track & tk = seedTracks_[ts];
nHits[ts] = tk.nFoundHits();
charge[ts] = tk.charge();
oldPhi[ts] = tk.momPhi();
pos2[ts] = std::pow(tk.x(), 2) + std::pow(tk.y(), 2);
eta[ts] = tk.momEta();
theta[ts] = std::atan2(tk.pT(),tk.pz());
invptq[ts] = tk.charge()*tk.invpT();
pt[ts] = tk.pT();
x[ts] = tk.x();
y[ts] = tk.y();
z[ts] = tk.z();
}
for(int ts=0; ts<ns; ts++){
if (not writetrack[ts]) continue;//FIXME: this speed up prevents transitive masking; check build cost!
const float oldPhi1 = oldPhi[ts];
const float pos2_first = pos2[ts];
const float Eta1 = eta[ts];
const float Pt1 = pt[ts];
const float invptq_first = invptq[ts];
//#pragma simd /* Vectorization via simd had issues with icc */
for (int tss= ts+1; tss<ns; tss++){
const float Pt2 = pt[tss];
////// Always require charge consistency. If different charge is assigned, do not remove seed-track
if(charge[tss] != charge[ts])
continue;
const float thisDPt = std::abs(Pt2-Pt1);
////// Require pT consistency between seeds. If dpT is large, do not remove seed-track.
////// Adaptive thresholds, based on pT of reference seed-track (choice is a compromise between efficiency and duplicate rate):
////// - 2.5% if track is barrel and w/ pT<2 GeV
////// - 1.25% if track is non-barrel and w/ pT<2 GeV
////// - 10% if track w/ 2<pT<5 GeV
////// - 20% if track w/ 5<pT<10 GeV
////// - 25% if track w/ pT>10 GeV
if(thisDPt>dpt_brl_0*(Pt1) && Pt1<ptmax_0 && std::abs(Eta1)<etamax_brl)
continue;
else if(thisDPt>dpt_ec_0*(Pt1) && Pt1<ptmax_0 && std::abs(Eta1)>etamax_brl)
continue;
else if(thisDPt>dpt_1*(Pt1) && Pt1>ptmax_0 && Pt1<ptmax_1)
continue;
else if(thisDPt>dpt_2*(Pt1) && Pt1>ptmax_1 && Pt1<ptmax_2)
continue;
else if(thisDPt>dpt_3*(Pt1) && Pt1>ptmax_2)
continue;
const float Eta2 = eta[tss];
const float deta2 = std::pow(Eta1-Eta2, 2);
const float oldPhi2 = oldPhi[tss];
const float pos2_second = pos2[tss];
const float thisDXYSign05 = pos2_second > pos2_first ? -0.5f : 0.5f;
const float thisDXY = thisDXYSign05*sqrt( std::pow(x[ts]-x[tss], 2) + std::pow(y[ts]-y[tss], 2) );
const float invptq_second = invptq[tss];
const float newPhi1 = oldPhi1-thisDXY*invR1GeV*invptq_first;
const float newPhi2 = oldPhi2+thisDXY*invR1GeV*invptq_second;
const float dphi = cdist(std::abs(newPhi1-newPhi2));
const float dr2 = deta2+dphi*dphi;
const float thisDZ = z[ts]-z[tss]-thisDXY*(1.f/std::tan(theta[ts])+1.f/std::tan(theta[tss]));
const float dz2 = thisDZ*thisDZ;
////// Reject tracks within dR-dz elliptical window.
////// Adaptive thresholds, based on observation that duplicates are more abundant at large pseudo-rapidity and low track pT
if(std::abs(Eta1)<etamax_brl){
if(dz2/dzmax2_brl+dr2/drmax2_brl<1.0f)
writetrack[tss]=false;
}
else if(Pt1>ptmin_hpt){
if(dz2/dzmax2_hpt+dr2/drmax2_hpt<1.0f)
writetrack[tss]=false;
}
else {
if(dz2/dzmax2_els+dr2/drmax2_els<1.0f)
writetrack[tss]=false;
}
}
if(writetrack[ts])
cleanSeedTracks.emplace_back(seedTracks_[ts]);
}
seedTracks_.swap(cleanSeedTracks);
#ifdef DEBUG
{
const int ns2 = seedTracks_.size();
printf("Number of CMS seeds before %d --> after %d cleaning\n", ns, ns2);
for (int it = 0; it < ns2; it++)
{
const Track& ss = seedTracks_[it];
printf(" %3i q=%+i pT=%7.3f eta=% 7.3f nHits=%i label=% i\n",
it,ss.charge(),ss.pT(),ss.momEta(),ss.nFoundHits(),ss.label());
}
}