-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtinyimagenet_MUC_MAS.py
609 lines (558 loc) · 33.4 KB
/
tinyimagenet_MUC_MAS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
#!/usr/bin/env python
# coding=utf-8
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim import lr_scheduler
import torchvision
from torchvision import datasets, models, transforms
from torch.autograd import Variable
import numpy as np
import time
import os
import sys
import copy
import argparse
import scipy.io as sio
try:
import cPickle as pickle
except:
import pickle
import resnet_model
import utils_pytorch
from compute_accuracy import compute_accuracy_WI
from compute_accuracy import compute_accuracy_Version1
from utils_dataset import split_images_labels
from utils_dataset import merge_images_labels
global device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
######### Modifiable Settings ##########
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='tinyImageNet', type=str)
parser.add_argument('--dataset_dir', default='./data/Tiny_ImageNet', type=str)
parser.add_argument('--OOD_dir', default='./data/SVHN', type=str)
parser.add_argument('--num_classes', default=200, type=int)
parser.add_argument('--nb_cl_fg', default=40, type=int, help='the number of classes in first group')
parser.add_argument('--nb_cl', default=40, type=int, help='Classes per group')
parser.add_argument('--nb_protos', default=0, type=int, help='Number of prototypes per class at the end')
parser.add_argument('--nb_runs', default=1, type=int, help='Number of runs (random ordering of classes at each run)')
parser.add_argument('--ckp_prefix', default='MUC_MAS_TinyImageNet', type=str, help='Checkpoint prefix')
parser.add_argument('--resume', default='True', action='store_true', help='resume from checkpoint')
parser.add_argument('--random_seed', default=1993, type=int, help='random seed')
parser.add_argument('--cuda', default=True, help='enables cuda')
parser.add_argument('--side_classifier', default=3, type=int, help='multiple classifiers')
parser.add_argument('--Stage3_flag', default='True', action='store_true', help='multiple classifiers')
parser.add_argument('--alpha', default=0.005, type=float, help='weight for regularization')
args = parser.parse_args()
ckp_prefix = './checkpoint/{}/MUC_MAS/step_{}_K_{}/'.format(args.dataset, args.nb_cl, args.side_classifier)
def variable(t: torch.Tensor, use_cuda=True, **kwargs):
t = t.to(device)
return Variable(t, **kwargs)
class MAS(object):
def __init__(self, model: nn.Module, evalloader, cls_id, iteration, side_fc=False):
self.model = model
self.dataset = evalloader
self.params = {n: p for n, p in self.model.named_parameters() if 'fc' not in n}
self.precision_matrices = self._diag_fisher(cls_id, iteration, side_fc=side_fc)
def _diag_fisher(self, cls_id, iteration, side_fc=False):
print("Training MAS model: Classifier %d"%(cls_id))
precision_matrices = {}
mse_criterion = nn.MSELoss()
mse_criterion = mse_criterion.to(device)
for n, p in copy.deepcopy(self.params).items():
p.data.zero_()
precision_matrices[n] = variable(p.data)
self.model.eval()
for batch_idx, (inputs, targets) in enumerate(self.dataset):
inputs, targets = inputs.to(device), targets.to(device)
#num_old_classes = args.nb_cl * iteration
#targets = targets - num_old_classes
if side_fc is True:
start_index = args.side_classifier * args.nb_cl * iteration
else:
start_index = args.nb_cl * iteration
self.model.zero_grad()
outputs = self.model(inputs, side_fc=side_fc)
i = cls_id - 1
Target_zeros = torch.zeros_like(outputs[:, (start_index + args.nb_cl * i):(start_index + args.nb_cl * (i + 1))]).to(device)
loss_cls = mse_criterion(outputs[:, (start_index + args.nb_cl * i):(start_index + args.nb_cl * (i + 1))], Target_zeros)
loss_cls.backward()
for n, p in self.model.named_parameters():
if 'fc' not in n:
precision_matrices[n].data += torch.abs(p.grad.data) / len(self.dataset)
if (batch_idx + 1) % 200 == 0:
print(batch_idx + 1)
precision_matrices = {n: p for n, p in precision_matrices.items()}
save_name_side = os.path.join(ckp_prefix + 'WI/Weight_Importance_step_{}_K_{}_classifier_{}.pkl').format(iteration, args.side_classifier, cls_id)
utils_pytorch.savepickle(precision_matrices, save_name_side)
return precision_matrices
def WI_penalty(tg_model, old_params, precision_matrices):
loss = 0
for n, p in tg_model.named_parameters():
if 'fc' not in n:
## Note that, divide by sqrt(iteration)
#_loss = (precision_matrices[n].data.view(-1) / np.sqrt(iteration)) * (p.view(-1) - old_params[n].data.view(-1)) ** 2
_loss = precision_matrices[n].data.view(-1) * (p.view(-1) - old_params[n].data.view(-1)) ** 2
loss += _loss.sum()
return loss
########################################
assert(args.nb_cl_fg % args.nb_cl == 0)
assert(args.nb_cl_fg >= args.nb_cl)
train_batch_size = 128 # Batch size for train
test_batch_size = 100 # Batch size for test
eval_batch_size = 100 # Batch size for eval
base_lr = 0.1 # Initial learning rate
lr_strat = [120, 160, 180] # Epochs where learning rate gets decreased
lr_factor = 0.1 # Learning rate decrease factor
custom_weight_decay = 5e-4 # Weight Decay
custom_momentum = 0.9 # Momentum
epochs = 200
val_epoch = 10 # evaluate the model in every val_epoch
save_epoch = 50 # save the model in every save_epoch
np.random.seed(args.random_seed) # Fix the random seed
print(args)
Stage1_flag = True # Train new model and new classifier
Stage2_flag = True # Compute weight importance
Stage3_flag = True # Train side classifiers with Maximum Classifier Discrepancy
Stage4_flag = True # Compute weight stability
########################################
# Data loading code
traindir = args.dataset_dir + '/train'
valdir = args.dataset_dir + '/val_folders'
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
trainset = datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.Resize((32, 32)),
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
testset = datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor(),
normalize,
]))
evalset = datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor(),
normalize,
]))
# save accuracy
top1_acc_list = np.zeros((args.nb_runs, int(args.num_classes/args.nb_cl), int(epochs/val_epoch)))
X_train_total, Y_train_total = split_images_labels(trainset.imgs)
X_valid_total, Y_valid_total = split_images_labels(testset.imgs)
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
#transforms.RandomRotation(10),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
## Load unlabeled data from SVHN
svhn_data = torchvision.datasets.SVHN(root=args.OOD_dir, download=False, transform=transform_train)
svhn_num = svhn_data.data.shape[0]
svhn_data_copy = svhn_data.data
svhn_labels_copy = svhn_data.labels
# Launch the different runs
for n_run in range(args.nb_runs):
# Select the order for the class learning
order_name = "./checkpoint/{}_order_run_{}.pkl".format(args.dataset, n_run)
print("Order name:{}".format(order_name))
if os.path.exists(order_name):
print("Loading orders")
order = utils_pytorch.unpickle(order_name)
else:
print("Generating orders")
order = np.arange(args.num_classes)
np.random.shuffle(order)
utils_pytorch.savepickle(order, order_name)
order_list = list(order)
print(order_list)
start_iter = 0
for iteration in range(start_iter, int(args.num_classes/args.nb_cl)):
# Prepare the training data for the current batch of classes
actual_cl = order[range(iteration*args.nb_cl,(iteration+1)*args.nb_cl)]
indices_train_subset = np.array([i in order[range(iteration*args.nb_cl,(iteration+1)*args.nb_cl)] for i in Y_train_total])
indices_test_subset = np.array([i in order[range(0,(iteration+1)*args.nb_cl)] for i in Y_valid_total])
## images
X_train = X_train_total[indices_train_subset]
X_valid = X_valid_total[indices_test_subset]
## labels
Y_train = Y_train_total[indices_train_subset]
Y_valid = Y_valid_total[indices_test_subset]
# Launch the training loop
print('Batch of classes number {0} arrives ...'.format(iteration+1))
map_Y_train = np.array([order_list.index(i) for i in Y_train])
map_Y_valid = np.array([order_list.index(i) for i in Y_valid])
############################################################
current_train_images = merge_images_labels(X_train, map_Y_train)
trainset.imgs = trainset.samples = current_train_images
trainloader = torch.utils.data.DataLoader(trainset, batch_size=train_batch_size, shuffle=True, num_workers=2)
current_test_images = merge_images_labels(X_valid, map_Y_valid)
testset.imgs = testset.samples = current_test_images
testloader = torch.utils.data.DataLoader(testset, batch_size=test_batch_size, shuffle=False, num_workers=2)
print('Max and Min of train labels: {}, {}'.format(min(map_Y_train), max(map_Y_train)))
print('Max and Min of valid labels: {}, {}'.format(min(map_Y_valid), max(map_Y_valid)))
##############################################################
# Add the stored exemplars to the training data
if iteration == start_iter:
X_valid_ori = X_valid
Y_valid_ori = Y_valid
else:
indices_test_subset_ori = np.array([i in order[range(0, iteration*args.nb_cl)] for i in Y_valid_total])
X_valid_ori = X_valid_total[indices_test_subset_ori]
Y_valid_ori = Y_valid_total[indices_test_subset_ori]
if iteration == start_iter:
# base classes
tg_model = resnet_cifar.resnet32(num_classes=args.nb_cl, side_classifier=args.side_classifier)
tg_model = tg_model.to(device)
ref_model = None
num_old_classes = 0
else:
# # ############################################################
#increment classes
ref_model = copy.deepcopy(tg_model)
ref_model = ref_model.to(device)
ref_model.eval()
for param in ref_model.parameters():
param.requires_grad = False
# copy old parameters
old_params = {n: p for n, p in ref_model.named_parameters() if 'fc' not in n}
## new main classifier
num_old_classes = ref_model.fc.out_features
in_features = ref_model.fc.in_features # dim
new_fc = nn.Linear(in_features, args.nb_cl*(iteration+1)).cuda()
new_fc.weight.data[:num_old_classes] = ref_model.fc.weight.data
new_fc.bias.data[:num_old_classes] = ref_model.fc.bias.data
tg_model.fc = new_fc
## new side classifier
num_old_classes_side = ref_model.fc_side.out_features
in_features = ref_model.fc.in_features # dim
new_fc_side = nn.Linear(in_features, args.side_classifier*args.nb_cl*(iteration+1)).cuda()
new_fc_side.weight.data[:num_old_classes_side] = ref_model.fc_side.weight.data
new_fc_side.bias.data[:num_old_classes_side] = ref_model.fc_side.bias.data
tg_model.fc_side = new_fc_side
for param in tg_model.parameters():
param.requires_grad = True
########### Stage 1: Train Multiple Classifiers for each iteration #################
if Stage1_flag is True:
print("Stage 1: Train the model for iteration {}".format(iteration))
# Training
update_params = list(tg_model.parameters())
tg_optimizer = optim.SGD(update_params, lr=base_lr, momentum=custom_momentum, weight_decay=custom_weight_decay)
# tg_optimizer = optim.SGD(tg_params, lr=base_lr, weight_decay=custom_weight_decay)
tg_lr_scheduler = lr_scheduler.MultiStepLR(tg_optimizer, milestones=lr_strat, gamma=lr_factor)
cls_criterion = nn.CrossEntropyLoss()
cls_criterion.to(device)
for epoch in range(epochs):
temp = 1
tg_lr_scheduler.step()
for batch_idx, (inputs, targets) in enumerate(trainloader):
if args.cuda:
inputs = inputs.to(device)
targets = targets.to(device)
if iteration == start_iter:
outputs = tg_model(inputs, side_fc=False)
loss_cls = cls_criterion(outputs[:, num_old_classes:(num_old_classes+args.nb_cl)], targets)
loss = loss_cls
else:
targets = targets - args.nb_cl * iteration
outputs = tg_model(inputs)
loss_cls = 0
outputs = tg_model(inputs, side_fc=False)
loss_cls = cls_criterion(outputs[:, num_old_classes:(num_old_classes + args.nb_cl)], targets)
# weight importance loss
loss_importance = args.alpha * WI_penalty(tg_model, old_params, weight_importance_sum)
# weight stability loss
loss_stability = args.alpha * WI_penalty(tg_model, old_params, weight_stability_sum)
loss = loss_cls + loss_stability + loss_importance
tg_optimizer.zero_grad()
loss.backward()
tg_optimizer.step()
if iteration==start_iter:
print('Epoch: %d, LR: %.4f, loss_cls: %.4f' % (epoch, tg_lr_scheduler.get_lr()[0], loss_cls.item()))
#print(acts)
else:
print('Epoch: %d, LR: %.4f, loss_cls: %.4f, loss_stability: %.4f, loss_importance: %.4f' % (
epoch, tg_lr_scheduler.get_lr()[0], loss_cls.item(), loss_stability.item(), loss_importance.item()))
# evaluate the val set
if (epoch + 1) % val_epoch == 0:
tg_model.eval()
if iteration>start_iter:
## joint classifiers
#num_old_classes = ref_model.fc.out_featurese
tg_model.fc.weight.data[:num_old_classes] = ref_model.fc.weight.data
tg_model.fc.bias.data[:num_old_classes] = ref_model.fc.bias.data
print("##############################################################")
# Calculate validation error of model on the original classes:
map_Y_valid_ori = np.array([order_list.index(i) for i in Y_valid_ori])
# print('Computing accuracy on the original batch of classes...')
ori_eval_set = merge_images_labels(X_valid_ori, map_Y_valid_ori)
evalset.imgs = evalset.samples = ori_eval_set
evalloader = torch.utils.data.DataLoader(evalset, batch_size=eval_batch_size, shuffle=False, num_workers=2)
acc_old = compute_accuracy_WI(tg_model, evalloader, 0, args.nb_cl*(iteration+1))
print('Old classes accuracy: {:.2f} %'.format(acc_old))
##
indices_test_subset_cur = np.array([i in order[range(iteration * args.nb_cl, (iteration+1) * args.nb_cl)] for i in Y_valid_total])
X_valid_cur = X_valid_total[indices_test_subset_cur]
Y_valid_cur = Y_valid_total[indices_test_subset_cur]
map_Y_valid_cur = np.array([order_list.index(i) for i in Y_valid_cur])
# print('Computing accuracy on the original batch of classes...')
current_eval_set = merge_images_labels(X_valid_cur, map_Y_valid_cur)
evalset.imgs = evalset.samples = current_eval_set
evalloader = torch.utils.data.DataLoader(evalset, batch_size=eval_batch_size, shuffle=False, num_workers=2)
acc_cur = compute_accuracy_WI(tg_model, evalloader, 0, args.nb_cl*(iteration+1))
print('New classes accuracy: {:.2f} %'.format(acc_cur))
# Calculate validation error of model on the cumul of classes:
acc = compute_accuracy_WI(tg_model, testloader, 0, args.nb_cl*(iteration+1))
print('Total accuracy: {:.2f} %'.format(acc))
print("##############################################################")
tg_model.train()
## record accuracy
top1_acc_list[n_run, iteration, int((epoch + 1)/val_epoch)-1] = np.array(acc)
if (epoch + 1) % save_epoch == 0:
# # # save feature extractor
ckp_name = os.path.join(ckp_prefix + 'ResNet32_Model_run_{}_step_{}.pth').format(n_run,iteration)
torch.save(tg_model.state_dict(), ckp_name)
########### end of Stage 1
########### Stage 2: Compute weight importance for each iteration #################
if Stage2_flag is True:
print("Stage 2: Compute Weight Importance for iteration {}".format(iteration))
save_name = os.path.join(ckp_prefix + 'Weight_Importance_run_{}_step_{}.pkl').format(n_run, iteration)
# if os.path.exists(save_name):
# print("Loading Weight Importance Model")
# weight_importance_new = utils_pytorch.unpickle(save_name)
# else:
if 1 == 1:
print("Training New Weight Importance Model")
# samples from last task
indices_sample_set = np.array(
[i in order[range(iteration * args.nb_cl, (iteration + 1) * args.nb_cl)] for i in
Y_train_total])
X_sample = X_train_total[indices_sample_set]
Y_sample = Y_train_total[indices_sample_set]
map_Y_sample = np.array([order_list.index(i) for i in Y_sample])
sample_eval_set = merge_images_labels(X_sample, map_Y_sample)
evalset.imgs = evalset.samples = sample_eval_set
evalloader = torch.utils.data.DataLoader(evalset, batch_size=1, shuffle=False, num_workers=2)
## compute MAS
stage2_model = copy.deepcopy(tg_model)
stage2_model = stage2_model.to(device)
stage2_model.eval()
mas_model = MAS(stage2_model, evalloader, 1, iteration, side_fc=False)
weight_importance_new = {}
weight_importance_sum = {}
for n, p in copy.deepcopy(mas_model.params).items():
p.data.zero_()
weight_importance_new[n] = variable(p.data.view(-1))
weight_importance_sum[n] = variable(p.data.view(-1))
for n, p in stage2_model.named_parameters():
if 'fc' not in n:
weight_importance_new[n] = mas_model.precision_matrices[n].data.view(-1)
weight_importance_sum[n] = mas_model.precision_matrices[n].data.view(-1)
## Add old Weight Importance
if iteration > 0:
save_name_old = os.path.join(ckp_prefix + 'Weight_Importance_run_{}_step_{}.pkl').format(n_run,
iteration - 1)
if os.path.exists(save_name_old):
print("Loading Old Weight Importance Model")
weight_importance_old = utils_pytorch.unpickle(save_name_old)
for n, p in weight_importance_sum.items():
weight_importance_sum[n].data += weight_importance_new[n].data
weight_importance_sum = {n: p for n, p in weight_importance_sum.items()}
save_name = os.path.join(ckp_prefix + 'Weight_Importance_run_{}_step_{}.pkl').format(n_run,
iteration)
utils_pytorch.savepickle(weight_importance_sum, save_name)
########### end of Stage 2
########## Stage 3: Maximum Classifier Discrepancy for each iteration #################
if Stage3_flag is True:
print("Stage 3: Train Side Classifiers with Maximum Classifier Discrepancy for iteration {}".format(
iteration))
##
stage3_model = copy.deepcopy(tg_model)
start_index = args.nb_cl * args.side_classifier * iteration
# print("Initialize Side Classifiers with Main Classifier")
# for i in range(args.side_classifier):
# stage3_model.fc_side.weight.data[(start_index + args.nb_cl * i):(start_index + args.nb_cl * (i + 1))] = stage3_model.fc.weight.data[num_old_classes:]
# stage3_model.fc_side.bias.data[(start_index + args.nb_cl * i):(start_index + args.nb_cl * (i + 1))] = stage3_model.fc.bias.data[num_old_classes:]
stage3_model = stage3_model.to(device)
stage3_model.eval()
stage3_model.fc_side.train()
## fix feature extractor and main classifier
for n, p in stage3_model.named_parameters():
if 'fc_side' in n:
p.requires_grad = True
else:
p.requires_grad = False
stage3_lr_strat = [40, 60, 70]
stage3_epochs = 80
stage3_params = list(stage3_model.fc_side.parameters())
stage3_optimizer = optim.SGD(stage3_params, lr=base_lr, momentum=custom_momentum,
weight_decay=custom_weight_decay)
stage3_lr_scheduler = lr_scheduler.MultiStepLR(stage3_optimizer, milestones=stage3_lr_strat,
gamma=lr_factor)
cls_criterion = nn.CrossEntropyLoss()
cls_criterion.to(device)
## Train
for stage3_epoch in range(stage3_epochs):
stage3_lr_scheduler.step()
# select a subset of SVHN data
idx = torch.randperm(svhn_num)
svhn_data_copy = svhn_data_copy[idx]
svhn_labels_copy = svhn_labels_copy[idx]
svhn_data.data = svhn_data_copy[0:len(trainset.imgs)]
svhn_data.labels = svhn_labels_copy[0:len(trainset.imgs)]
svhn_loader = torch.utils.data.DataLoader(dataset=svhn_data, batch_size=train_batch_size,
shuffle=True, num_workers=2)
for (
(batch_idx, (inputs, targets)), (batch_idx_unlabel, (inputs_unlabel, targets_unlabel))) in zip(
enumerate(trainloader), enumerate(svhn_loader)):
if args.cuda:
inputs, targets, inputs_unlabel, targets_unlabel = inputs.to(device), targets.to(
device), inputs_unlabel.to(device), targets_unlabel.to(device)
targets = targets - args.nb_cl * iteration
loss_cls = 0
outputs = stage3_model(inputs, side_fc=True)
for i in range(args.side_classifier):
loss_cls += cls_criterion(
outputs[:, (start_index + args.nb_cl * i):(start_index + args.nb_cl * (i + 1))],
targets)
## discrepancy loss
outputs_unlabel = stage3_model(inputs_unlabel, side_fc=True)
loss_discrepancy = 0
for iter_1 in range(args.side_classifier):
outputs_unlabel_1 = outputs_unlabel[:, (start_index + args.nb_cl * iter_1):(
start_index + args.nb_cl * (iter_1 + 1))]
outputs_unlabel_1 = F.softmax(outputs_unlabel_1, dim=1)
for iter_2 in range(iter_1 + 1, args.side_classifier):
outputs_unlabel_2 = outputs_unlabel[:, (start_index + args.nb_cl * iter_2):(
start_index + args.nb_cl * (iter_2 + 1))]
outputs_unlabel_2 = F.softmax(outputs_unlabel_2, dim=1)
# loss_discrepancy += torch.mean(F.relu(1.0 - torch.sum(torch.abs(outputs_unlabel_1 - outputs_unlabel_2), 1)))
loss_discrepancy += torch.mean(
torch.mean(torch.abs(outputs_unlabel_1 - outputs_unlabel_2), 1))
loss = loss_cls - loss_discrepancy
stage3_optimizer.zero_grad()
loss.backward()
stage3_optimizer.step()
print('Epoch: %d, LR: %.4f, loss_cls: %.4f, loss_discrepancy: %.4f' % (
stage3_epoch, stage3_lr_scheduler.get_lr()[0], loss_cls.item() / args.side_classifier,
loss_discrepancy.item()))
# evaluate the val set
if (stage3_epoch + 1) % 10 == 0:
stage3_model.fc_side.eval()
if iteration > start_iter:
## joint classifiers
# num_old_classes = ref_model.fc.out_features
stage3_model.fc_side.weight.data[:start_index] = ref_model.fc_side.weight.data
stage3_model.fc_side.bias.data[:start_index] = ref_model.fc_side.bias.data
print("##############################################################")
indices_test_subset_current = np.array(
[i in order[range(iteration * args.nb_cl, (iteration + 1) * args.nb_cl)] for i in
Y_valid_total])
X_valid_current = X_valid_total[indices_test_subset_current]
Y_valid_current = Y_valid_total[indices_test_subset_current]
map_Y_valid_current = np.array([order_list.index(i) for i in Y_valid_current])
# print('Computing accuracy on the original batch of classes...')
# print('Computing accuracy on the original batch of classes...')
current_eval_set = merge_images_labels(X_valid_current, map_Y_valid_current)
evalset.imgs = evalset.samples = current_eval_set
evalloader = torch.utils.data.DataLoader(evalset, batch_size=eval_batch_size, shuffle=False,
num_workers=2)
acc = compute_accuracy_Version1(stage3_model, evalloader, args.nb_cl, args.side_classifier,
iteration)
print('Maximum Classifier Discrepancy accuracy: {:.2f} %'.format(acc))
print("##############################################################")
stage3_model.fc_side.train()
if (stage3_epoch + 1) % 40 == 0:
ckp_name = os.path.join(ckp_prefix + 'MCD_ResNet32_Model_run_{}_step_{}.pth').format(n_run,
iteration)
torch.save(stage3_model.state_dict(), ckp_name)
## copy old and new classifiers to tg_model
if iteration > start_iter:
tg_model.fc_side.weight.data[:start_index] = ref_model.fc_side.weight.data
tg_model.fc_side.bias.data[:start_index] = ref_model.fc_side.bias.data
tg_model.fc_side.weight.data[start_index:] = stage3_model.fc_side.weight.data[start_index:]
tg_model.fc_side.bias.data[start_index:] = stage3_model.fc_side.bias.data[start_index:]
########### end of Stage 3
########### Stage 4: Compute Weight Stability for each iteration ##################
if Stage4_flag is True:
print("Stage 4: Compute Weight Stability for iteration {}".format(iteration))
# save_name = os.path.join(ckp_prefix + 'Weigtht_Stability_run_{}_step_{}_K_{}.pkl').format(n_run, iteration, args.side_classifier)
# if os.path.exists(save_name):
# print("Loading Weight Stability Model")
# precision_matrices_new = utils_pytorch.unpickle(save_name)
# else:
if 1 == 1:
print("Training New Weight Stability Model")
# samples from last task
indices_sample_set = np.array(
[i in order[range(iteration * args.nb_cl, (iteration + 1) * args.nb_cl)] for i in
Y_train_total])
X_sample = X_train_total[indices_sample_set]
Y_sample = Y_train_total[indices_sample_set]
map_Y_sample = np.array([order_list.index(i) for i in Y_sample])
sample_eval_set = merge_images_labels(X_sample, map_Y_sample)
evalset.imgs = evalset.samples = sample_eval_set
evalloader = torch.utils.data.DataLoader(evalset, batch_size=1, shuffle=False, num_workers=2)
## Two-classifier case
stage4_model = copy.deepcopy(tg_model)
stage4_model = stage4_model.to(device)
stage4_model.eval()
mas_model1 = MAS(stage4_model, evalloader, 1, iteration, side_fc=True)
##
stage4_model = copy.deepcopy(tg_model)
stage4_model = stage4_model.to(device)
stage4_model.eval()
mas_model2 = MAS(stage4_model, evalloader, 2, iteration, side_fc=True)
##
stage4_model = copy.deepcopy(tg_model)
stage4_model = stage4_model.to(device)
stage4_model.eval()
mas_model3 = MAS(stage4_model, evalloader, 3, iteration, side_fc=True)
##
weight_stability_sum = {}
for n, p in copy.deepcopy(mas_model1.params).items():
p.data.zero_()
weight_stability_sum[n] = variable(p.data.view(-1))
print("Compute Weight Stability")
for n, p in stage4_model.named_parameters():
if 'fc' not in n:
WI_vec = weight_importance_new[n].data.view(-1) # 1*N
cls1_vec = mas_model1.precision_matrices[n].data.view(-1) # 1*N
cls2_vec = mas_model2.precision_matrices[n].data.view(-1) # 1*N
cls3_vec = mas_model3.precision_matrices[n].data.view(-1) # 1*N
# cls_concat_vec = torch.cat((cls1_vec, cls2_vec), dim=0)
diff1_vec = (cls1_vec - WI_vec) ** 2
diff2_vec = (cls2_vec - WI_vec) ** 2
diff3_vec = (cls3_vec - WI_vec) ** 2
diff_vec = torch.sqrt((diff1_vec + diff2_vec + diff3_vec) / args.side_classifier) # Note!!
std_vec = diff_vec / (WI_vec + sys.float_info.epsilon)
stability_vec = torch.exp(1 - std_vec)
##
sum_vec = (cls1_vec + cls2_vec + cls3_vec) / args.side_classifier ##np.sqrt(args.side_classifier) # Note!!
weight_stability_sum[n] = stability_vec * sum_vec # more stable, more important
## Add old Weight Stability
if iteration > 0:
save_name_old = os.path.join(ckp_prefix + 'Weigtht_Stability_run_{}_step_{}_K_{}.pkl').format(
n_run, iteration - 1, args.side_classifier)
if os.path.exists(save_name_old):
print("Loading Old Weight Stability Model")
weight_stability_old = utils_pytorch.unpickle(save_name_old)
for n, p in weight_stability_sum.items():
weight_stability_sum[n].data += weight_stability_old[n].data
weight_stability_sum = {n: p for n, p in weight_stability_sum.items()}
save_name = os.path.join(ckp_prefix + 'Weigtht_Stability_run_{}_step_{}_K_{}.pkl').format(n_run,
iteration,
args.side_classifier)
utils_pytorch.savepickle(weight_stability_sum, save_name)
##################################################################
# Final save of the results
print("Save accuracy results for iteration {}".format(iteration))
ckp_name = os.path.join(ckp_prefix + 'MUC_MAS_top1_acc_list_K={}_W_0.01.mat').format(args.side_classifier)
sio.savemat(ckp_name, {'accuracy': top1_acc_list})
##################################################################