You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
(lim) C:\Users\Rentalhub\Desktop\CSP-master\CSP-master>python train_city.py
Using TensorFlow backend.
2020-06-04 16:24:48.520936: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_100.dll
num of training samples: 2975
2020-06-04 16:24:50.878578: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library nvcuda.dll
2020-06-04 16:24:51.169308: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: GeForce GTX 1050 major: 6 minor: 1 memoryClockRate(GHz): 1.493
pciBusID: 0000:01:00.0
2020-06-04 16:24:51.177449: I tensorflow/stream_executor/platform/default/dlopen_checker_stub.cc:25] GPU libraries are statically linked, skip dlopen check.
2020-06-04 16:24:51.189843: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2020-06-04 16:24:51.193950: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2
2020-06-04 16:24:51.204817: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: GeForce GTX 1050 major: 6 minor: 1 memoryClockRate(GHz): 1.493
pciBusID: 0000:01:00.0
2020-06-04 16:24:51.212932: I tensorflow/stream_executor/platform/default/dlopen_checker_stub.cc:25] GPU libraries are statically linked, skip dlopen check.
2020-06-04 16:24:51.225292: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2020-06-04 16:24:51.848683: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-06-04 16:24:51.853215: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] 0
2020-06-04 16:24:51.855928: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0: N
2020-06-04 16:24:51.868025: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 3002 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1050, pci bus id: 0000:01:00.0, compute capability: 6.1)
tracking <tf.Variable 'P3norm/P3norm_gamma:0' shape=(160,) dtype=float32> gamma
Traceback (most recent call last):
File "C:\Users\Rentalhub\anaconda3\envs\lim\lib\site-packages\tensorflow_core\python\framework\ops.py", line 1610, in _create_c_op
c_op = c_api.TF_FinishOperation(op_desc)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Dimensions must be equal, but are 256 and 160 for 'P3norm/mul' (op: 'Mul') with input shapes: [?,?,?,256], [160].
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "train_city.py", line 45, in
preds = nn.nn_p3p4p5(img_input, offset=C.offset, num_scale=C.num_scale, trainable=True)
File "C:\Users\Rentalhub\Desktop\CSP-master\CSP-master\keras_csp\resnet50.py", line 316, in nn_p3p4p5
P3_up = L2Normalization(gamma_init=10, name='P3norm')(P3_up)
File "C:\Users\Rentalhub\anaconda3\envs\lim\lib\site-packages\keras\backend\tensorflow_backend.py", line 75, in symbolic_fn_wrapper
return func(*args, **kwargs)
File "C:\Users\Rentalhub\anaconda3\envs\lim\lib\site-packages\keras\engine\base_layer.py", line 489, in call
output = self.call(inputs, **kwargs)
File "C:\Users\Rentalhub\Desktop\CSP-master\CSP-master\keras_csp\keras_layer_L2Normalization.py", line 63, in call
output *= self.gamma
File "C:\Users\Rentalhub\anaconda3\envs\lim\lib\site-packages\tensorflow_core\python\ops\math_ops.py", line 912, in binary_op_wrapper
return func(x, y, name=name)
File "C:\Users\Rentalhub\anaconda3\envs\lim\lib\site-packages\tensorflow_core\python\ops\math_ops.py", line 1206, in _mul_dispatch
return gen_math_ops.mul(x, y, name=name)
File "C:\Users\Rentalhub\anaconda3\envs\lim\lib\site-packages\tensorflow_core\python\ops\gen_math_ops.py", line 6701, in mul
"Mul", x=x, y=y, name=name)
File "C:\Users\Rentalhub\anaconda3\envs\lim\lib\site-packages\tensorflow_core\python\framework\op_def_library.py", line 793, in _apply_op_helper
op_def=op_def)
File "C:\Users\Rentalhub\anaconda3\envs\lim\lib\site-packages\tensorflow_core\python\framework\func_graph.py", line 548, in create_op
compute_device)
File "C:\Users\Rentalhub\anaconda3\envs\lim\lib\site-packages\tensorflow_core\python\framework\ops.py", line 3429, in _create_op_internal
op_def=op_def)
File "C:\Users\Rentalhub\anaconda3\envs\lim\lib\site-packages\tensorflow_core\python\framework\ops.py", line 1773, in init
control_input_ops)
File "C:\Users\Rentalhub\anaconda3\envs\lim\lib\site-packages\tensorflow_core\python\framework\ops.py", line 1613, in _create_c_op
raise ValueError(str(e))
ValueError: Dimensions must be equal, but are 256 and 160 for 'P3norm/mul' (op: 'Mul') with input shapes: [?,?,?,256], [160].
i got this ValueError.
before this errro came up, there were some miss match function between my python version and this python. so i tried to change old function to new one.
i think this error is in L2Normalization function.
somebody help me..
i use
pyhton 3.7
CUDA 10.0
tensorflow 2.0
tensorflow-gpu 2.0
The text was updated successfully, but these errors were encountered:
(lim) C:\Users\Rentalhub\Desktop\CSP-master\CSP-master>python train_city.py
Using TensorFlow backend.
2020-06-04 16:24:48.520936: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_100.dll
num of training samples: 2975
2020-06-04 16:24:50.878578: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library nvcuda.dll
2020-06-04 16:24:51.169308: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: GeForce GTX 1050 major: 6 minor: 1 memoryClockRate(GHz): 1.493
pciBusID: 0000:01:00.0
2020-06-04 16:24:51.177449: I tensorflow/stream_executor/platform/default/dlopen_checker_stub.cc:25] GPU libraries are statically linked, skip dlopen check.
2020-06-04 16:24:51.189843: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2020-06-04 16:24:51.193950: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2
2020-06-04 16:24:51.204817: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties:
name: GeForce GTX 1050 major: 6 minor: 1 memoryClockRate(GHz): 1.493
pciBusID: 0000:01:00.0
2020-06-04 16:24:51.212932: I tensorflow/stream_executor/platform/default/dlopen_checker_stub.cc:25] GPU libraries are statically linked, skip dlopen check.
2020-06-04 16:24:51.225292: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2020-06-04 16:24:51.848683: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-06-04 16:24:51.853215: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] 0
2020-06-04 16:24:51.855928: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0: N
2020-06-04 16:24:51.868025: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 3002 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1050, pci bus id: 0000:01:00.0, compute capability: 6.1)
tracking <tf.Variable 'P3norm/P3norm_gamma:0' shape=(160,) dtype=float32> gamma
Traceback (most recent call last):
File "C:\Users\Rentalhub\anaconda3\envs\lim\lib\site-packages\tensorflow_core\python\framework\ops.py", line 1610, in _create_c_op
c_op = c_api.TF_FinishOperation(op_desc)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Dimensions must be equal, but are 256 and 160 for 'P3norm/mul' (op: 'Mul') with input shapes: [?,?,?,256], [160].
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "train_city.py", line 45, in
preds = nn.nn_p3p4p5(img_input, offset=C.offset, num_scale=C.num_scale, trainable=True)
File "C:\Users\Rentalhub\Desktop\CSP-master\CSP-master\keras_csp\resnet50.py", line 316, in nn_p3p4p5
P3_up = L2Normalization(gamma_init=10, name='P3norm')(P3_up)
File "C:\Users\Rentalhub\anaconda3\envs\lim\lib\site-packages\keras\backend\tensorflow_backend.py", line 75, in symbolic_fn_wrapper
return func(*args, **kwargs)
File "C:\Users\Rentalhub\anaconda3\envs\lim\lib\site-packages\keras\engine\base_layer.py", line 489, in call
output = self.call(inputs, **kwargs)
File "C:\Users\Rentalhub\Desktop\CSP-master\CSP-master\keras_csp\keras_layer_L2Normalization.py", line 63, in call
output *= self.gamma
File "C:\Users\Rentalhub\anaconda3\envs\lim\lib\site-packages\tensorflow_core\python\ops\math_ops.py", line 912, in binary_op_wrapper
return func(x, y, name=name)
File "C:\Users\Rentalhub\anaconda3\envs\lim\lib\site-packages\tensorflow_core\python\ops\math_ops.py", line 1206, in _mul_dispatch
return gen_math_ops.mul(x, y, name=name)
File "C:\Users\Rentalhub\anaconda3\envs\lim\lib\site-packages\tensorflow_core\python\ops\gen_math_ops.py", line 6701, in mul
"Mul", x=x, y=y, name=name)
File "C:\Users\Rentalhub\anaconda3\envs\lim\lib\site-packages\tensorflow_core\python\framework\op_def_library.py", line 793, in _apply_op_helper
op_def=op_def)
File "C:\Users\Rentalhub\anaconda3\envs\lim\lib\site-packages\tensorflow_core\python\framework\func_graph.py", line 548, in create_op
compute_device)
File "C:\Users\Rentalhub\anaconda3\envs\lim\lib\site-packages\tensorflow_core\python\framework\ops.py", line 3429, in _create_op_internal
op_def=op_def)
File "C:\Users\Rentalhub\anaconda3\envs\lim\lib\site-packages\tensorflow_core\python\framework\ops.py", line 1773, in init
control_input_ops)
File "C:\Users\Rentalhub\anaconda3\envs\lim\lib\site-packages\tensorflow_core\python\framework\ops.py", line 1613, in _create_c_op
raise ValueError(str(e))
ValueError: Dimensions must be equal, but are 256 and 160 for 'P3norm/mul' (op: 'Mul') with input shapes: [?,?,?,256], [160].
i got this ValueError.
before this errro came up, there were some miss match function between my python version and this python. so i tried to change old function to new one.
i think this error is in L2Normalization function.
somebody help me..
i use
pyhton 3.7
CUDA 10.0
tensorflow 2.0
tensorflow-gpu 2.0
The text was updated successfully, but these errors were encountered: