forked from johnma2006/mamba-minimal
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
341 lines (251 loc) · 12.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
"""Simple, minimal implementation of Mamba in one file of PyTorch.
Suggest reading the following before/while reading the code:
[1] Mamba: Linear-Time Sequence Modeling with Selective State Spaces (Albert Gu and Tri Dao)
https://arxiv.org/abs/2312.00752
[2] The Annotated S4 (Sasha Rush and Sidd Karamcheti)
https://srush.github.io/annotated-s4
Glossary:
b: batch size (`B` in Mamba paper [1] Algorithm 2)
l: sequence length (`L` in [1] Algorithm 2)
d or d_model: hidden dim
n or d_state: latent state dim (`N` in [1] Algorithm 2)
expand: expansion factor (`E` in [1] Section 3.4)
d_in or d_inner: d * expand (`D` in [1] Algorithm 2)
A, B, C, D: state space parameters (See any state space representation formula)
(B, C are input-dependent (aka selective, a key innovation in Mamba); A, D are not)
Δ or delta: input-dependent step size
dt_rank: rank of Δ (See [1] Section 3.6 "Parameterization of ∆")
"""
from __future__ import annotations
import math
import json
import torch
import torch.nn as nn
import torch.nn.functional as F
from dataclasses import dataclass
from einops import rearrange, repeat, einsum
@dataclass
class ModelArgs:
d_model: int
n_layer: int
vocab_size: int
d_state: int = 16
expand: int = 2
dt_rank: Union[int, str] = 'auto'
d_conv: int = 4
pad_vocab_size_multiple: int = 8
conv_bias: bool = True
bias: bool = False
def __post_init__(self):
self.d_inner = int(self.expand * self.d_model)
if self.dt_rank == 'auto':
self.dt_rank = math.ceil(self.d_model / 16)
if self.vocab_size % self.pad_vocab_size_multiple != 0:
self.vocab_size += (self.pad_vocab_size_multiple
- self.vocab_size % self.pad_vocab_size_multiple)
class Mamba(nn.Module):
def __init__(self, args: ModelArgs):
"""Full Mamba model."""
super().__init__()
self.args = args
self.embedding = nn.Embedding(args.vocab_size, args.d_model)
self.layers = nn.ModuleList([ResidualBlock(args) for _ in range(args.n_layer)])
self.norm_f = RMSNorm(args.d_model)
self.lm_head = nn.Linear(args.d_model, args.vocab_size, bias=False)
self.lm_head.weight = self.embedding.weight # Tie output projection to embedding weights.
# See "Weight Tying" paper
def forward(self, input_ids):
"""
Args:
input_ids (long tensor): shape (b, l) (See Glossary at top for definitions of b, l, d_in, n...)
Returns:
logits: shape (b, l, vocab_size)
Official Implementation:
class MambaLMHeadModel, https://github.com/state-spaces/mamba/blob/main/mamba_ssm/models/mixer_seq_simple.py#L173
"""
x = self.embedding(input_ids)
for layer in self.layers:
x = layer(x)
x = self.norm_f(x)
logits = self.lm_head(x)
return logits
@staticmethod
def from_pretrained(pretrained_model_name: str):
"""Load pretrained weights from HuggingFace into model.
Args:
pretrained_model_name: One of
* 'state-spaces/mamba-2.8b-slimpj'
* 'state-spaces/mamba-2.8b'
* 'state-spaces/mamba-1.4b'
* 'state-spaces/mamba-790m'
* 'state-spaces/mamba-370m'
* 'state-spaces/mamba-130m'
Returns:
model: Mamba model with weights loaded
"""
from transformers.utils import WEIGHTS_NAME, CONFIG_NAME
from transformers.utils.hub import cached_file
def load_config_hf(model_name):
resolved_archive_file = cached_file(model_name, CONFIG_NAME,
_raise_exceptions_for_missing_entries=False)
return json.load(open(resolved_archive_file))
def load_state_dict_hf(model_name, device=None, dtype=None):
resolved_archive_file = cached_file(model_name, WEIGHTS_NAME,
_raise_exceptions_for_missing_entries=False)
return torch.load(resolved_archive_file, weights_only=True, map_location='cpu', mmap=True)
config_data = load_config_hf(pretrained_model_name)
args = ModelArgs(
d_model=config_data['d_model'],
n_layer=config_data['n_layer'],
vocab_size=config_data['vocab_size']
)
model = Mamba(args)
state_dict = load_state_dict_hf(pretrained_model_name)
new_state_dict = {}
for key in state_dict:
new_key = key.replace('backbone.', '')
new_state_dict[new_key] = state_dict[key]
model.load_state_dict(new_state_dict)
return model
class ResidualBlock(nn.Module):
def __init__(self, args: ModelArgs):
"""Simple block wrapping Mamba block with normalization and residual connection."""
super().__init__()
self.args = args
self.mixer = MambaBlock(args)
self.norm = RMSNorm(args.d_model)
def forward(self, x):
"""
Args:
x: shape (b, l, d) (See Glossary at top for definitions of b, l, d_in, n...)
Returns:
output: shape (b, l, d)
Official Implementation:
Block.forward(), https://github.com/state-spaces/mamba/blob/main/mamba_ssm/modules/mamba_simple.py#L297
Note: the official repo chains residual blocks that look like
[Add -> Norm -> Mamba] -> [Add -> Norm -> Mamba] -> [Add -> Norm -> Mamba] -> ...
where the first Add is a no-op. This is purely for performance reasons as this
allows them to fuse the Add->Norm.
We instead implement our blocks as the more familiar, simpler, and numerically equivalent
[Norm -> Mamba -> Add] -> [Norm -> Mamba -> Add] -> [Norm -> Mamba -> Add] -> ....
"""
output = self.mixer(self.norm(x)) + x
return output
class MambaBlock(nn.Module):
def __init__(self, args: ModelArgs):
"""A single Mamba block, as described in Figure 3 in Section 3.4 in the Mamba paper [1]."""
super().__init__()
self.args = args
self.in_proj = nn.Linear(args.d_model, args.d_inner * 2, bias=args.bias)
self.conv1d = nn.Conv1d(
in_channels=args.d_inner,
out_channels=args.d_inner,
bias=args.conv_bias,
kernel_size=args.d_conv,
groups=args.d_inner,
padding=args.d_conv - 1,
)
# x_proj takes in `x` and outputs the input-specific Δ, B, C
self.x_proj = nn.Linear(args.d_inner, args.dt_rank + args.d_state * 2, bias=False)
# dt_proj projects Δ from dt_rank to d_in
self.dt_proj = nn.Linear(args.dt_rank, args.d_inner, bias=True)
A = repeat(torch.arange(1, args.d_state + 1), 'n -> d n', d=args.d_inner)
self.A_log = nn.Parameter(torch.log(A))
self.D = nn.Parameter(torch.ones(args.d_inner))
self.out_proj = nn.Linear(args.d_inner, args.d_model, bias=args.bias)
def forward(self, x):
"""Mamba block forward. This looks the same as Figure 3 in Section 3.4 in the Mamba paper [1].
Args:
x: shape (b, l, d) (See Glossary at top for definitions of b, l, d_in, n...)
Returns:
output: shape (b, l, d)
Official Implementation:
class Mamba, https://github.com/state-spaces/mamba/blob/main/mamba_ssm/modules/mamba_simple.py#L119
mamba_inner_ref(), https://github.com/state-spaces/mamba/blob/main/mamba_ssm/ops/selective_scan_interface.py#L311
"""
(b, l, d) = x.shape
x_and_res = self.in_proj(x) # shape (b, l, 2 * d_in)
(x, res) = x_and_res.split(split_size=[self.args.d_inner, self.args.d_inner], dim=-1)
x = rearrange(x, 'b l d_in -> b d_in l')
x = self.conv1d(x)[:, :, :l]
x = rearrange(x, 'b d_in l -> b l d_in')
x = F.silu(x)
y = self.ssm(x)
y = y * F.silu(res)
output = self.out_proj(y)
return output
def ssm(self, x):
"""Runs the SSM. See:
- Algorithm 2 in Section 3.2 in the Mamba paper [1]
- run_SSM(A, B, C, u) in The Annotated S4 [2]
Args:
x: shape (b, l, d_in) (See Glossary at top for definitions of b, l, d_in, n...)
Returns:
output: shape (b, l, d_in)
Official Implementation:
mamba_inner_ref(), https://github.com/state-spaces/mamba/blob/main/mamba_ssm/ops/selective_scan_interface.py#L311
"""
(d_in, n) = self.A_log.shape
# Compute ∆ A B C D, the state space parameters.
# A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
# ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
# and is why Mamba is called **selective** state spaces)
A = -torch.exp(self.A_log.float()) # shape (d_in, n)
D = self.D.float()
x_dbl = self.x_proj(x) # (b, l, dt_rank + 2*n)
(delta, B, C) = x_dbl.split(split_size=[self.args.dt_rank, n, n], dim=-1) # delta: (b, l, dt_rank). B, C: (b, l, n)
delta = F.softplus(self.dt_proj(delta)) # (b, l, d_in)
y = self.selective_scan(x, delta, A, B, C, D) # This is similar to run_SSM(A, B, C, u) in The Annotated S4 [2]
return y
def selective_scan(self, u, delta, A, B, C, D):
"""Does selective scan algorithm. See:
- Section 2 State Space Models in the Mamba paper [1]
- Algorithm 2 in Section 3.2 in the Mamba paper [1]
- run_SSM(A, B, C, u) in The Annotated S4 [2]
This is the classic discrete state space formula:
x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)
except B and C (and the step size delta, which is used for discretization) are dependent on the input x(t).
Args:
u: shape (b, l, d_in) (See Glossary at top for definitions of b, l, d_in, n...)
delta: shape (b, l, d_in)
A: shape (d_in, n)
B: shape (b, l, n)
C: shape (b, l, n)
D: shape (d_in,)
Returns:
output: shape (b, l, d_in)
Official Implementation:
selective_scan_ref(), https://github.com/state-spaces/mamba/blob/main/mamba_ssm/ops/selective_scan_interface.py#L86
Note: I refactored some parts out of `selective_scan_ref` out, so the functionality doesn't match exactly.
"""
(b, l, d_in) = u.shape
n = A.shape[1]
# Discretize continuous parameters (A, B)
# - A is discretized using zero-order hold (ZOH) discretization (see Section 2 Equation 4 in the Mamba paper [1])
# - B is discretized using a simplified Euler discretization instead of ZOH. From a discussion with authors:
# "A is the more important term and the performance doesn't change much with the simplification on B"
deltaA = torch.exp(einsum(delta, A, 'b l d_in, d_in n -> b l d_in n'))
deltaB_u = einsum(delta, B, u, 'b l d_in, b l n, b l d_in -> b l d_in n')
# Perform selective scan (see scan_SSM() in The Annotated S4 [2])
# Note that the below is sequential, while the official implementation does a much faster parallel scan that
# is additionally hardware-aware (like FlashAttention).
x = torch.zeros((b, d_in, n), device=deltaA.device)
ys = []
for i in range(l):
x = deltaA[:, i] * x + deltaB_u[:, i]
y = einsum(x, C[:, i, :], 'b d_in n, b n -> b d_in')
ys.append(y)
y = torch.stack(ys, dim=1) # shape (b, l, d_in)
y = y + u * D
return y
class RMSNorm(nn.Module):
def __init__(self,
d_model: int,
eps: float = 1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(d_model))
def forward(self, x):
output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) * self.weight
return output