We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
您好,我想完成在BCDD数据集上train_cd的复现,我首先对原始的BCDD数据集进行了256*256的裁剪,得到了7434对影像,我只对训练数据进行了旋转以及翻转的扩充进行训练,得到的结果是训练集上的损失有下降,但验证集上的Iou还不到50%。我看您也是做了训练集的数据扩充,请问您将训练集数目扩充到了多少,能否共享您的数据扩充代码以及您的训练集与测试集数据,这样更有利于不同方法之间的公平比较,期待您的回复。
The text was updated successfully, but these errors were encountered:
您好,很抱歉因时间较久,之前的训练数据集没有找到。印象中是对BCDD的训练集进行了两次随机角度的旋转(在(-30,0)和(0,30)的角度范围内),从而将训练集扩增到原来的3倍。扩增的代码可以参考data_aug.py
Sorry, something went wrong.
您好这个问题解决了吗?
您好,我想请教个问题,对于在算完两幅图像距离出来后维度是(1,64,128,128),经过插值后dist维度是(1,64,256,256),那他这个维度与label的维度(1,1,256,256)不统一,那么他们两个是如何进行比较的呢?
No branches or pull requests
您好,我想完成在BCDD数据集上train_cd的复现,我首先对原始的BCDD数据集进行了256*256的裁剪,得到了7434对影像,我只对训练数据进行了旋转以及翻转的扩充进行训练,得到的结果是训练集上的损失有下降,但验证集上的Iou还不到50%。我看您也是做了训练集的数据扩充,请问您将训练集数目扩充到了多少,能否共享您的数据扩充代码以及您的训练集与测试集数据,这样更有利于不同方法之间的公平比较,期待您的回复。
The text was updated successfully, but these errors were encountered: