forked from hkociemba/RubiksCube-TwophaseSolver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
face.py
118 lines (108 loc) · 4.44 KB
/
face.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# ####### The cube on the facelet level is described by positions of the colored stickers. #############################
from defs import cornerFacelet, edgeFacelet, cornerColor, edgeColor
from enums import Color, Corner, Edge
from cubie import CubieCube
class FaceCube:
"""Represent a cube on the facelet level with 54 colored facelets."""
def __init__(self):
self.f = []
for i in range(9):
self.f.append(Color.U)
for i in range(9):
self.f.append(Color.R)
for i in range(9):
self.f.append(Color.F)
for i in range(9):
self.f.append(Color.D)
for i in range(9):
self.f.append(Color.L)
for i in range(9):
self.f.append(Color.B)
def __str__(self):
return self.to_string()
def from_string(self, s):
"""Construct a facelet cube from a string. See class Facelet(IntEnum) in enums.py for string format."""
if len(s) < 54:
return 'Error: Cube definition string ' + s + ' contains less than 54 facelets.'
elif len(s) > 54:
return 'Error: Cube definition string ' + s + ' contains more than 54 facelets.'
cnt = [0] * 6
for i in range(54):
if s[i] == 'U':
self.f[i] = Color.U
cnt[Color.U] += 1
elif s[i] == 'R':
self.f[i] = Color.R
cnt[Color.R] += 1
elif s[i] == 'F':
self.f[i] = Color.F
cnt[Color.F] += 1
elif s[i] == 'D':
self.f[i] = Color.D
cnt[Color.D] += 1
elif s[i] == 'L':
self.f[i] = Color.L
cnt[Color.L] += 1
elif s[i] == 'B':
self.f[i] = Color.B
cnt[Color.B] += 1
if all(x == 9 for x in cnt):
return True
else:
return 'Error: Cube definition string ' + s + ' does not contain exactly 9 facelets of each color.'
def to_string(self):
"""Give a string representation of the facelet cube."""
s = ''
for i in range(54):
if self.f[i] == Color.U:
s += 'U'
elif self.f[i] == Color.R:
s += 'R'
elif self.f[i] == Color.F:
s += 'F'
elif self.f[i] == Color.D:
s += 'D'
elif self.f[i] == Color.L:
s += 'L'
elif self.f[i] == Color.B:
s += 'B'
return s
def to_2dstring(self):
"""Give a 2dstring representation of a facelet cube."""
s = self.to_string()
r = ' ' + s[0:3] + '\n ' + s[3:6] + '\n ' + s[6:9] + '\n'
r += s[36:39] + s[18:21] + s[9:12] + s[45:48] + '\n' + s[39:42] + s[21:24] + s[12:15] + s[48:51] \
+ '\n' + s[42:45] + s[24:27] + s[15:18] + s[51:54] + '\n'
r += ' ' + s[27:30] + '\n ' + s[30:33] + '\n ' + s[33:36] + '\n'
return r
def to_cubie_cube(self):
"""Return a cubie representation of the facelet cube."""
cc = CubieCube()
cc.cp = [-1] * 8 # invalidate corner and edge permutation
cc.ep = [-1] * 12
for i in Corner:
fac = cornerFacelet[i] # facelets of corner at position i
for ori in range(3):
if self.f[fac[ori]] == Color.U or self.f[fac[ori]] == Color.D:
break
col1 = self.f[fac[(ori + 1) % 3]] # colors which identify the corner at position i
col2 = self.f[fac[(ori + 2) % 3]]
for j in Corner:
col = cornerColor[j] # colors of corner j
if col1 == col[1] and col2 == col[2]:
cc.cp[i] = j # we have corner j in corner position i
cc.co[i] = ori
break
for i in Edge:
for j in Edge:
if self.f[edgeFacelet[i][0]] == edgeColor[j][0] and \
self.f[edgeFacelet[i][1]] == edgeColor[j][1]:
cc.ep[i] = j
cc.eo[i] = 0
break
if self.f[edgeFacelet[i][0]] == edgeColor[j][1] and \
self.f[edgeFacelet[i][1]] == edgeColor[j][0]:
cc.ep[i] = j
cc.eo[i] = 1
break
return cc