-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathopts.py
executable file
·46 lines (43 loc) · 2.94 KB
/
opts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from __future__ import print_function
import argparse
import os
def argparser():
P = argparse.ArgumentParser(description='Train network script')
P.add_argument('--data', type=str, default='data/300W_LP', help='path to dataset')
P.add_argument('--seed', type=int, default=0, help='maunlly set RNG seed')
P.add_argument('--nGpu', type=int, default=1, help='number of gpu(s) to use')
P.add_argument('--snapshot', type=int, default=10, help='save a snapshot every n epoch(s)')
P.add_argument('--epochs', type=int, default=110, help='Number of total epochs to run')
P.add_argument('--workers', type=int, default=32, help='number of data loader threads')
# for a single GPU.
P.add_argument('--train-batch', type=int, default=10, help='minibatch size')
P.add_argument('--val-batch', type=int, default=10, help='minibatch size')
P.add_argument('-c', '--checkpoint', type=str, default='checkpoint', help='model save path')
P.add_argument('--resume', type=str, default='', help='resume from lasteset saved checkpoints')
P.add_argument('--lr', type=float, default=1e-4, help='initial learning rate')
P.add_argument('--momentum', type=float, default=0.9, help='momentum')
P.add_argument('--weight-decay', type=float, default=0.0, help='weight decay')
P.add_argument('--netType', type=str, default='fan', help='options: fan')
P.add_argument(
'--pointType', type=str, default='3D', choices=['2D', '3D'], help='2D or 3D face alignment')
P.add_argument('--nModules', type=int, default=1, help='number of modules per level')
P.add_argument('--nStacks', type=int, default=4, help='number of stacked network(s)')
P.add_argument('--use-se', action='store_true', help='use SE layer or not')
P.add_argument('--use-attention', action='store_true', help='use SE layer or not')
P.add_argument(
'--schedule', type=int, nargs="+", default=[15, 30], help='adjust lr at this epoch')
P.add_argument('--gamma', type=float, default=0.1, help='lr decay')
P.add_argument(
'--nFeats', type=int, default=256, help='block width (number of intermediate channels)')
P.add_argument('--retrain', type=str, default='', help='path to model to retrain with')
P.add_argument('--optimState', type=str, default='', help='path to optimState to reload from')
P.add_argument('--scale-factor', type=float, default=0.3, help='scaling factor')
P.add_argument('--rot-factor', type=float, default=30, help='rotation factor(in degrees)')
P.add_argument('-e', '--evaluation', action='store_true', help='show intermediate results')
# P.add_argument('--reval', type=float, default='checkpoint/fan3d/300W-LP')
P.add_argument('--debug', action='store_true', help='show intermediate results')
P.add_argument('--flip', action='store_true', help='Flip input image')
P.add_argument(
'--start-epoch', default=0, type=int, help='manual epoch number (useful on restarts)')
args = P.parse_args()
return args