-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy pathlib.rs
608 lines (541 loc) · 21.5 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
// Copyright 2019 the Piet Authors
// SPDX-License-Identifier: Apache-2.0 OR MIT
//! The Cairo backend for the Piet 2D graphics abstraction.
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![deny(clippy::trivially_copy_pass_by_ref)]
mod text;
use std::borrow::Cow;
use cairo::{Context, Filter, Format, ImageSurface, Matrix, Rectangle, SurfacePattern};
use piet::kurbo::{Affine, PathEl, Point, QuadBez, Rect, Shape, Size};
use piet::{
Color, Error, FixedGradient, Image, ImageFormat, InterpolationMode, IntoBrush, LineCap,
LineJoin, RenderContext, StrokeStyle,
};
pub use cairo;
pub use crate::text::{CairoText, CairoTextLayout, CairoTextLayoutBuilder};
pub struct CairoRenderContext<'a> {
// Cairo has this as Clone and with &self methods, but we do this to avoid
// concurrency problems.
ctx: &'a Context,
text: CairoText,
// because of the relationship between GTK and cairo (where GTK applies a transform
// to adjust for menus and window borders) we cannot trust the transform returned
// by cairo. Instead we maintain our own stack, which will contain
// only those transforms applied by us.
transform_stack: Vec<Affine>,
error: Result<(), cairo::Error>,
}
#[derive(Clone)]
pub enum Brush {
Solid(u32),
Linear(cairo::LinearGradient),
Radial(cairo::RadialGradient),
}
#[derive(Clone)]
pub struct CairoImage(ImageSurface);
// we call this with different types of gradient that have `add_color_stop_rgba` fns,
// and there's no trait for this behaviour so we use a macro. ¯\_(ツ)_/¯
macro_rules! set_gradient_stops {
($dst: expr, $stops: expr) => {
for stop in $stops {
let rgba = stop.color.as_rgba_u32();
$dst.add_color_stop_rgba(
stop.pos as f64,
byte_to_frac(rgba >> 24),
byte_to_frac(rgba >> 16),
byte_to_frac(rgba >> 8),
byte_to_frac(rgba),
);
}
};
}
impl<'a> RenderContext for CairoRenderContext<'a> {
type Brush = Brush;
type Text = CairoText;
type TextLayout = CairoTextLayout;
type Image = CairoImage;
fn status(&mut self) -> Result<(), Error> {
match self.error {
Ok(_) => Ok(()),
Err(err) => Err(Error::BackendError(err.into())),
}
}
fn clear(&mut self, region: impl Into<Option<Rect>>, color: Color) {
let region: Option<Rect> = region.into();
let _ = self.with_save(|rc| {
rc.ctx.reset_clip();
// we DO want to clip the specified region and reset the transformation
if let Some(region) = region {
rc.transform(rc.current_transform().inverse());
rc.clip(region);
}
//prepare the colors etc
let rgba = color.as_rgba_u32();
rc.ctx.set_source_rgba(
byte_to_frac(rgba >> 24),
byte_to_frac(rgba >> 16),
byte_to_frac(rgba >> 8),
byte_to_frac(rgba),
);
rc.ctx.set_operator(cairo::Operator::Source);
rc.ctx.paint().map_err(convert_error)
});
}
fn solid_brush(&mut self, color: Color) -> Brush {
Brush::Solid(color.as_rgba_u32())
}
fn gradient(&mut self, gradient: impl Into<FixedGradient>) -> Result<Brush, Error> {
match gradient.into() {
FixedGradient::Linear(linear) => {
let (x0, y0) = (linear.start.x, linear.start.y);
let (x1, y1) = (linear.end.x, linear.end.y);
let lg = cairo::LinearGradient::new(x0, y0, x1, y1);
set_gradient_stops!(&lg, &linear.stops);
Ok(Brush::Linear(lg))
}
FixedGradient::Radial(radial) => {
let (xc, yc) = (radial.center.x, radial.center.y);
let (xo, yo) = (radial.origin_offset.x, radial.origin_offset.y);
let r = radial.radius;
let rg = cairo::RadialGradient::new(xc + xo, yc + yo, 0.0, xc, yc, r);
set_gradient_stops!(&rg, &radial.stops);
Ok(Brush::Radial(rg))
}
}
}
fn fill(&mut self, shape: impl Shape, brush: &impl IntoBrush<Self>) {
let brush = brush.make_brush(self, || shape.bounding_box());
self.set_path(shape);
self.set_brush(&brush);
self.ctx.set_fill_rule(cairo::FillRule::Winding);
self.error = self.ctx.fill();
}
fn fill_even_odd(&mut self, shape: impl Shape, brush: &impl IntoBrush<Self>) {
let brush = brush.make_brush(self, || shape.bounding_box());
self.set_path(shape);
self.set_brush(&brush);
self.ctx.set_fill_rule(cairo::FillRule::EvenOdd);
self.error = self.ctx.fill();
}
fn clip(&mut self, shape: impl Shape) {
self.set_path(shape);
self.ctx.set_fill_rule(cairo::FillRule::Winding);
self.ctx.clip();
}
fn stroke(&mut self, shape: impl Shape, brush: &impl IntoBrush<Self>, width: f64) {
let brush = brush.make_brush(self, || shape.bounding_box());
self.set_path(shape);
self.set_stroke(width, None);
self.set_brush(&brush);
self.error = self.ctx.stroke();
}
fn stroke_styled(
&mut self,
shape: impl Shape,
brush: &impl IntoBrush<Self>,
width: f64,
style: &StrokeStyle,
) {
let brush = brush.make_brush(self, || shape.bounding_box());
self.set_path(shape);
self.set_stroke(width, Some(style));
self.set_brush(&brush);
self.error = self.ctx.stroke();
}
fn text(&mut self) -> &mut Self::Text {
&mut self.text
}
fn draw_text(&mut self, layout: &Self::TextLayout, pos: impl Into<Point>) {
let pos = pos.into();
let offset = layout.pango_offset();
self.ctx.move_to(pos.x - offset.x, pos.y - offset.y);
pangocairo::functions::show_layout(self.ctx, layout.pango_layout());
}
fn save(&mut self) -> Result<(), Error> {
self.ctx.save().map_err(convert_error)?;
let state = self.transform_stack.last().copied().unwrap_or_default();
self.transform_stack.push(state);
Ok(())
}
fn restore(&mut self) -> Result<(), Error> {
if self.transform_stack.pop().is_some() {
// we're defensive about calling restore on the inner context,
// because an unbalanced call will trigger a panic in cairo-rs
self.ctx.restore().map_err(convert_error)
} else {
Err(Error::StackUnbalance)
}
}
fn finish(&mut self) -> Result<(), Error> {
self.ctx.target().flush();
Ok(())
}
fn transform(&mut self, transform: Affine) {
if let Some(last) = self.transform_stack.last_mut() {
*last *= transform;
} else {
self.transform_stack.push(transform);
}
self.ctx.transform(affine_to_matrix(transform));
}
fn current_transform(&self) -> Affine {
self.transform_stack.last().copied().unwrap_or_default()
}
// allows e.g. raw_data[dst_off + x * 4 + 2] = buf[src_off + x * 4 + 0];
#[allow(clippy::identity_op)]
fn make_image_with_stride(
&mut self,
width: usize,
height: usize,
stride: usize,
buf: &[u8],
format: ImageFormat,
) -> Result<Self::Image, Error> {
let cairo_fmt = match format {
ImageFormat::Rgb | ImageFormat::Grayscale => Format::Rgb24,
ImageFormat::RgbaSeparate | ImageFormat::RgbaPremul => Format::ARgb32,
_ => return Err(Error::NotSupported),
};
let width_int = width as i32;
let height_int = height as i32;
let mut image = ImageSurface::create(cairo_fmt, width_int, height_int)
.map_err(|e| Error::BackendError(Box::new(e)))?;
// early-return if the image has no data in it
if width_int == 0 || height_int == 0 {
return Ok(CairoImage(image));
}
// Confident no borrow errors because we just created it.
let image_stride = image.stride() as usize;
{
if buf.len()
< piet::util::expected_image_buffer_size(
width * format.bytes_per_pixel(),
height,
stride,
)
{
return Err(Error::InvalidInput);
}
let mut data = image.data().map_err(|e| Error::BackendError(Box::new(e)))?;
for y in 0..height {
let src_off = y * stride;
let data = &mut data[y * image_stride..];
match format {
ImageFormat::Rgb => {
for x in 0..width {
write_rgb(
data,
x,
buf[src_off + x * 3 + 0],
buf[src_off + x * 3 + 1],
buf[src_off + x * 3 + 2],
);
}
}
ImageFormat::RgbaPremul => {
// It's annoying that Cairo exposes only ARGB. Ah well. Let's
// hope that LLVM generates pretty good code for this.
// TODO: consider adding BgraPremul format.
for x in 0..width {
write_rgba(
data,
x,
buf[src_off + x * 4 + 0],
buf[src_off + x * 4 + 1],
buf[src_off + x * 4 + 2],
buf[src_off + x * 4 + 3],
);
}
}
ImageFormat::RgbaSeparate => {
fn premul(x: u8, a: u8) -> u8 {
let y = (x as u16) * (a as u16);
((y + (y >> 8) + 0x80) >> 8) as u8
}
for x in 0..width {
let a = buf[src_off + x * 4 + 3];
write_rgba(
data,
x,
premul(buf[src_off + x * 4 + 0], a),
premul(buf[src_off + x * 4 + 1], a),
premul(buf[src_off + x * 4 + 2], a),
a,
);
}
}
ImageFormat::Grayscale => {
for x in 0..width {
write_rgb(
data,
x,
buf[src_off + x],
buf[src_off + x],
buf[src_off + x],
);
}
}
_ => return Err(Error::NotSupported),
}
}
}
Ok(CairoImage(image))
}
#[inline]
fn draw_image(
&mut self,
image: &Self::Image,
dst_rect: impl Into<Rect>,
interp: InterpolationMode,
) {
self.draw_image_inner(&image.0, None, dst_rect.into(), interp);
}
#[inline]
fn draw_image_area(
&mut self,
image: &Self::Image,
src_rect: impl Into<Rect>,
dst_rect: impl Into<Rect>,
interp: InterpolationMode,
) {
self.draw_image_inner(&image.0, Some(src_rect.into()), dst_rect.into(), interp);
}
fn capture_image_area(&mut self, src_rect: impl Into<Rect>) -> Result<Self::Image, Error> {
let src_rect: Rect = src_rect.into();
// In order to capture the correct image area, we first need to convert from
// user space (the logical rectangle) to device space (the "physical" rectangle).
// For example, in a HiDPI (2x) setting, a user-space rectangle of 20x20 would be
// 40x40 in device space.
let user_rect = Rectangle::new(
src_rect.x0,
src_rect.y0,
src_rect.width(),
src_rect.height(),
);
let device_rect = self.user_to_device(&user_rect);
// This is the surface to which we draw the captured image area
let target_surface = ImageSurface::create(
Format::ARgb32,
device_rect.width() as i32,
device_rect.height() as i32,
)
.map_err(convert_error)?;
let target_ctx = Context::new(&target_surface).map_err(convert_error)?;
// Since we (potentially) don't want to capture the entire surface, we crop the
// source surface to the requested "sub-surface" using `create_for_rectangle`.
let cropped_source_surface = self
.ctx
.target()
.create_for_rectangle(device_rect)
.map_err(convert_error)?;
// Finally, we fill the entirety of the target surface (via the target context)
// with the select region of the source surface.
target_ctx
.set_source_surface(&cropped_source_surface, 0.0, 0.0)
.map_err(convert_error)?;
target_ctx.rectangle(0.0, 0.0, device_rect.width(), device_rect.height());
target_ctx.fill().map_err(convert_error)?;
Ok(CairoImage(target_surface))
}
fn blurred_rect(&mut self, rect: Rect, blur_radius: f64, brush: &impl IntoBrush<Self>) {
let brush = brush.make_brush(self, || rect);
match compute_blurred_rect(rect, blur_radius) {
Ok((image, origin)) => {
self.set_brush(&brush);
self.error = self
.ctx
.mask_surface(&image, origin.x, origin.y)
.map_err(cairo::Error::into);
}
Err(err) => self.error = Err(err),
}
}
}
impl<'a> IntoBrush<CairoRenderContext<'a>> for Brush {
fn make_brush<'b>(
&'b self,
_piet: &mut CairoRenderContext,
_bbox: impl FnOnce() -> Rect,
) -> std::borrow::Cow<'b, Brush> {
Cow::Borrowed(self)
}
}
impl Image for CairoImage {
fn size(&self) -> Size {
Size::new(self.0.width().into(), self.0.height().into())
}
}
impl<'a> CairoRenderContext<'a> {
/// Create a new Cairo back-end.
///
/// At the moment, it uses the "toy text API" for text layout, but when
/// we change to a more sophisticated text layout approach, we'll probably
/// need a factory for that as an additional argument.
pub fn new(ctx: &Context) -> CairoRenderContext {
CairoRenderContext {
ctx,
text: CairoText::new(),
transform_stack: Vec::new(),
error: Ok(()),
}
}
/// Set the source pattern to the brush.
///
/// Cairo is super stateful, and we're trying to have more retained stuff.
/// This is part of the impedance matching.
fn set_brush(&mut self, brush: &Brush) {
match *brush {
Brush::Solid(rgba) => self.ctx.set_source_rgba(
byte_to_frac(rgba >> 24),
byte_to_frac(rgba >> 16),
byte_to_frac(rgba >> 8),
byte_to_frac(rgba),
),
Brush::Linear(ref linear) => self.error = self.ctx.set_source(linear),
Brush::Radial(ref radial) => self.error = self.ctx.set_source(radial),
}
}
/// Set the stroke parameters.
fn set_stroke(&mut self, width: f64, style: Option<&StrokeStyle>) {
let default_style = StrokeStyle::default();
let style = style.unwrap_or(&default_style);
self.ctx.set_line_width(width);
self.ctx.set_line_join(convert_line_join(style.line_join));
self.ctx.set_line_cap(convert_line_cap(style.line_cap));
if let Some(limit) = style.miter_limit() {
self.ctx.set_miter_limit(limit);
}
self.ctx.set_dash(&style.dash_pattern, style.dash_offset);
}
fn set_path(&mut self, shape: impl Shape) {
// This shouldn't be necessary, we always leave the context in no-path
// state. But just in case, and it should be harmless.
self.ctx.new_path();
let mut last = Point::ZERO;
for el in shape.path_elements(1e-3) {
match el {
PathEl::MoveTo(p) => {
self.ctx.move_to(p.x, p.y);
last = p;
}
PathEl::LineTo(p) => {
self.ctx.line_to(p.x, p.y);
last = p;
}
PathEl::QuadTo(p1, p2) => {
let q = QuadBez::new(last, p1, p2);
let c = q.raise();
self.ctx
.curve_to(c.p1.x, c.p1.y, c.p2.x, c.p2.y, p2.x, p2.y);
last = p2;
}
PathEl::CurveTo(p1, p2, p3) => {
self.ctx.curve_to(p1.x, p1.y, p2.x, p2.y, p3.x, p3.y);
last = p3;
}
PathEl::ClosePath => self.ctx.close_path(),
}
}
}
fn draw_image_inner(
&mut self,
image: &ImageSurface,
src_rect: Option<Rect>,
dst_rect: Rect,
interp: InterpolationMode,
) {
let src_rect = match src_rect {
Some(src_rect) => src_rect,
None => Size::new(image.width() as f64, image.height() as f64).to_rect(),
};
// Cairo returns an error if we try to paint an empty image, causing us to panic. We check if
// either the source or destination is empty, and early-return if so.
if src_rect.is_zero_area() || dst_rect.is_zero_area() {
return;
}
let _ = self.with_save(|rc| {
let surface_pattern = SurfacePattern::create(image);
let filter = match interp {
InterpolationMode::NearestNeighbor => Filter::Nearest,
InterpolationMode::Bilinear => Filter::Bilinear,
};
surface_pattern.set_filter(filter);
let scale_x = dst_rect.width() / src_rect.width();
let scale_y = dst_rect.height() / src_rect.height();
rc.clip(dst_rect);
rc.ctx.translate(
dst_rect.x0 - scale_x * src_rect.x0,
dst_rect.y0 - scale_y * src_rect.y0,
);
rc.ctx.scale(scale_x, scale_y);
rc.error = rc.ctx.set_source(&surface_pattern);
rc.error = rc.ctx.paint();
Ok(())
});
}
fn user_to_device(&self, user_rect: &Rectangle) -> Rectangle {
let (x, y) = self.ctx.user_to_device(user_rect.x(), user_rect.y());
let (width, height) = self
.ctx
.user_to_device(user_rect.width(), user_rect.height());
Rectangle::new(x, y, width, height)
}
}
fn convert_line_cap(line_cap: LineCap) -> cairo::LineCap {
match line_cap {
LineCap::Butt => cairo::LineCap::Butt,
LineCap::Round => cairo::LineCap::Round,
LineCap::Square => cairo::LineCap::Square,
}
}
fn convert_line_join(line_join: LineJoin) -> cairo::LineJoin {
match line_join {
LineJoin::Miter { .. } => cairo::LineJoin::Miter,
LineJoin::Round => cairo::LineJoin::Round,
LineJoin::Bevel => cairo::LineJoin::Bevel,
}
}
fn byte_to_frac(byte: u32) -> f64 {
((byte & 255) as f64) * (1.0 / 255.0)
}
/// Can't implement RoundFrom here because both types belong to other crates.
fn affine_to_matrix(affine: Affine) -> Matrix {
let a = affine.as_coeffs();
Matrix::new(a[0], a[1], a[2], a[3], a[4], a[5])
}
fn compute_blurred_rect(rect: Rect, radius: f64) -> Result<(ImageSurface, Point), cairo::Error> {
let size = piet::util::size_for_blurred_rect(rect, radius);
match ImageSurface::create(Format::A8, size.width as i32, size.height as i32) {
Ok(mut image) => {
let stride = image.stride() as usize;
// An error is returned when either:
// The reference to image is dropped (it isnt since its still in scope),
// There is an error on image (there isnt since we havnt used it yet),
// The pointer to the image is null aka the surface isnt an imagesurface (it is an imagesurface),
// Or the surface is finished (it isnt, we know because we dont finish it).
// Since we know none of these cases should happen, we know that this should not panic.
let mut data = image.data().unwrap();
let rect_exp = piet::util::compute_blurred_rect(rect, radius, stride, &mut data);
std::mem::drop(data);
let origin = rect_exp.origin();
Ok((image, origin))
}
Err(err) => Err(err),
}
}
fn convert_error(err: cairo::Error) -> Error {
Error::BackendError(err.into())
}
fn write_rgba(data: &mut [u8], column: usize, r: u8, g: u8, b: u8, a: u8) {
// From the cairo docs for CAIRO_FORMAT_ARGB32:
// > each pixel is a 32-bit quantity, with alpha in the upper 8 bits, then red,
// > then green, then blue. The 32-bit quantities are stored native-endian.
let (a, r, g, b) = (u32::from(a), u32::from(r), u32::from(g), u32::from(b));
let pixel = a << 24 | r << 16 | g << 8 | b;
data[4 * column..4 * (column + 1)].copy_from_slice(&pixel.to_ne_bytes());
}
fn write_rgb(data: &mut [u8], column: usize, r: u8, g: u8, b: u8) {
// From the cairo docs for CAIRO_FORMAT_RGB24:
// each pixel is a 32-bit quantity, with the upper 8 bits unused.
write_rgba(data, column, r, g, b, 0);
}