-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
47 lines (31 loc) · 1.38 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import numpy as np
import scipy.stats as stats
import utils
def gaussian(sample_num, miu, sigma):
mean, var, skew, kurt = stats.norm.stats(moments='mvsk')
x = np.linspace(stats.norm.ppf(0.01), stats.norm.ppf(0.99), 100)
pdf = stats.norm.pdf(x)
sample = stats.norm.rvs(size=sample_num) * sigma + miu
utils.plot_curve_and_hist(x, pdf, sample, 'Gaussian pdf')
return mean, var, skew, kurt, sample
def beta(sample_num, a, b):
mean, var, skew, kurt = stats.beta.stats(a, b, moments='mvsk')
x = np.linspace(stats.beta.ppf(0.01, a, b), stats.beta.ppf(0.99, a, b), 100)
pdf = stats.beta.pdf(x, a, b)
sample = stats.beta.rvs(a, b, size=sample_num)
utils.plot_curve_and_hist(x, pdf, sample, 'Beta pdf')
return mean, var, skew, kurt, sample
def gamma(sample_num, a):
mean, var, skew, kurt = stats.gamma.stats(a, moments='mvsk')
x = np.linspace(stats.gamma.ppf(0.01, a), stats.gamma.ppf(0.99, a), 100)
pdf = stats.gamma.pdf(x, a)
sample = stats.gamma.rvs(a, size=sample_num)
utils.plot_curve_and_hist(x, pdf, sample, 'Gamma pdf')
return mean, var, skew, kurt, sample
def laplace(sample_num):
mean, var, skew, kurt = stats.laplace.stats(moments='mvsk')
x = np.linspace(stats.laplace.ppf(0.01), stats.laplace.ppf(0.99), 100)
pdf = stats.laplace.pdf(x)
sample = stats.laplace.rvs(size=sample_num)
utils.plot_curve_and_hist(x, pdf, sample, 'Laplace pdf')
return mean, var, skew, kurt, sample