-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathneuron_layers.hpp
758 lines (694 loc) · 27 KB
/
neuron_layers.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
#ifndef CAFFE_NEURON_LAYERS_HPP_
#define CAFFE_NEURON_LAYERS_HPP_
#include <string>
#include <utility>
#include <vector>
#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"
#define HDF5_DATA_DATASET_NAME "data"
#define HDF5_DATA_LABEL_NAME "label"
namespace caffe {
/**
* @brief An interface for layers that take one blob as input (@f$ x @f$)
* and produce one equally-sized blob as output (@f$ y @f$), where
* each element of the output depends only on the corresponding input
* element.
*/
template <typename Dtype>
class NeuronLayer : public Layer<Dtype> {
public:
explicit NeuronLayer(const LayerParameter& param)
: Layer<Dtype>(param) {}
virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_NONE;
}
virtual inline int ExactNumBottomBlobs() const { return 1; }
virtual inline int ExactNumTopBlobs() const { return 1; }
};
/**
* @brief Computes @f$ y = |x| @f$
*
* @param bottom input Blob vector (length 1)
* -# @f$ (N \times C \times H \times W) @f$
* the inputs @f$ x @f$
* @param top output Blob vector (length 1)
* -# @f$ (N \times C \times H \times W) @f$
* the computed outputs @f$ y = |x| @f$
*/
template <typename Dtype>
class AbsValLayer : public NeuronLayer<Dtype> {
public:
explicit AbsValLayer(const LayerParameter& param)
: NeuronLayer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_ABSVAL;
}
virtual inline int ExactNumBottomBlobs() const { return 1; }
virtual inline int ExactNumTopBlobs() const { return 1; }
protected:
/// @copydoc AbsValLayer
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
/**
* @brief Computes the error gradient w.r.t. the absolute value inputs.
*
* @param top output Blob vector (length 1), providing the error gradient with
* respect to the outputs
* -# @f$ (N \times C \times H \times W) @f$
* containing error gradients @f$ \frac{\partial E}{\partial y} @f$
* with respect to computed outputs @f$ y @f$
* @param propagate_down see Layer::Backward.
* @param bottom input Blob vector (length 2)
* -# @f$ (N \times C \times H \times W) @f$
* the inputs @f$ x @f$; Backward fills their diff with
* gradients @f$
* \frac{\partial E}{\partial x} =
* \mathrm{sign}(x) \frac{\partial E}{\partial y}
* @f$ if propagate_down[0]
*/
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
};
/**
* @brief Computes @f$ y = x + \log(1 + \exp(-x)) @f$ if @f$ x > 0 @f$;
* @f$ y = \log(1 + \exp(x)) @f$ otherwise.
*
* @param bottom input Blob vector (length 1)
* -# @f$ (N \times C \times H \times W) @f$
* the inputs @f$ x @f$
* @param top output Blob vector (length 1)
* -# @f$ (N \times C \times H \times W) @f$
* the computed outputs @f$
* y = \left\{
* \begin{array}{ll}
* x + \log(1 + \exp(-x)) & \mbox{if } x > 0 \\
* \log(1 + \exp(x)) & \mbox{otherwise}
* \end{array} \right.
* @f$
*/
template <typename Dtype>
class BNLLLayer : public NeuronLayer<Dtype> {
public:
explicit BNLLLayer(const LayerParameter& param)
: NeuronLayer<Dtype>(param) {}
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_BNLL;
}
protected:
/// @copydoc BNLLLayer
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
/**
* @brief Computes the error gradient w.r.t. the BNLL inputs.
*
* @param top output Blob vector (length 1), providing the error gradient with
* respect to the outputs
* -# @f$ (N \times C \times H \times W) @f$
* containing error gradients @f$ \frac{\partial E}{\partial y} @f$
* with respect to computed outputs @f$ y @f$
* @param propagate_down see Layer::Backward.
* @param bottom input Blob vector (length 2)
* -# @f$ (N \times C \times H \times W) @f$
* the inputs @f$ x @f$; Backward fills their diff with
* gradients @f$
* \frac{\partial E}{\partial x}
* @f$ if propagate_down[0]
*/
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
};
/**
* @brief Batch Normalization per-channel with scale & shift linear transform.
*
*/
template <typename Dtype>
class BNLayer : public NeuronLayer<Dtype> {
public:
explicit BNLayer(const LayerParameter& param)
: NeuronLayer<Dtype>(param) {}
//virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
// vector<Blob<Dtype>*>* top);
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_BN;
}
virtual inline int ExactNumBottomBlobs() const { return 1; }
virtual inline int ExactNumTopBlobs() const { return 1; }
void set_batch_mean_and_batch_variance(const Blob<Dtype>& source_batch_mean,
const Blob<Dtype>& source_batch_variance) {
set_batch_mean(source_batch_mean);
set_batch_variance(source_batch_variance);
test_initialized_ = true;
};
bool test_initialized() { return test_initialized_; };
Blob<Dtype>& batch_mean() { return batch_mean_; };
protected:
void set_batch_mean(const Blob<Dtype>& source) {
batch_mean_.CopyFrom(source);
};
void set_batch_variance(const Blob<Dtype>& source) {
batch_variance_.CopyFrom(source);
};
/* virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
vector<Blob<Dtype>*>* top);
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, vector<Blob<Dtype>*>* bottom);
*/
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
// spatial mean & variance
Blob<Dtype> spatial_mean_, spatial_variance_;
// batch mean & variance
Blob<Dtype> batch_mean_, batch_variance_, batch_variance_sqrt_;
// buffer blob
Blob<Dtype> buffer_blob_;
// x_norm
Blob<Dtype> x_norm_;
// x_sum_multiplier is used to carry out sum using BLAS
Blob<Dtype> spatial_sum_multiplier_, batch_sum_multiplier_;
// dimension
int N_;
int C_;
int H_;
int W_;
// eps
Dtype var_eps_;
Caffe::Phase phase_;
bool test_initialized_;
};
/**
* @brief During training only, sets a random portion of @f$x@f$ to 0, adjusting
* the rest of the vector magnitude accordingly.
*
* @param bottom input Blob vector (length 1)
* -# @f$ (N \times C \times H \times W) @f$
* the inputs @f$ x @f$
* @param top output Blob vector (length 1)
* -# @f$ (N \times C \times H \times W) @f$
* the computed outputs @f$ y = |x| @f$
*/
template <typename Dtype>
class DropoutLayer : public NeuronLayer<Dtype> {
public:
/**
* @param param provides DropoutParameter dropout_param,
* with DropoutLayer options:
* - dropout_ratio (\b optional, default 0.5).
* Sets the probability @f$ p @f$ that any given unit is dropped.
*/
explicit DropoutLayer(const LayerParameter& param)
: NeuronLayer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_DROPOUT;
}
protected:
/**
* @param bottom input Blob vector (length 1)
* -# @f$ (N \times C \times H \times W) @f$
* the inputs @f$ x @f$
* @param top output Blob vector (length 1)
* -# @f$ (N \times C \times H \times W) @f$
* the computed outputs. At training time, we have @f$
* y_{\mbox{train}} = \left\{
* \begin{array}{ll}
* \frac{x}{1 - p} & \mbox{if } u > p \\
* 0 & \mbox{otherwise}
* \end{array} \right.
* @f$, where @f$ u \sim U(0, 1)@f$ is generated independently for each
* input at each iteration. At test time, we simply have
* @f$ y_{\mbox{test}} = \mathbb{E}[y_{\mbox{train}}] = x @f$.
*/
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
/// when divided by UINT_MAX, the randomly generated values @f$u\sim U(0,1)@f$
Blob<unsigned int> rand_vec_;
/// the probability @f$ p @f$ of dropping any input
Dtype threshold_;
/// the scale for undropped inputs at train time @f$ 1 / (1 - p) @f$
Dtype scale_;
unsigned int uint_thres_;
};
/**
* @brief Computes @f$ y = \gamma ^ {\alpha x + \beta} @f$,
* as specified by the scale @f$ \alpha @f$, shift @f$ \beta @f$,
* and base @f$ \gamma @f$.
*/
template <typename Dtype>
class ExpLayer : public NeuronLayer<Dtype> {
public:
/**
* @param param provides ExpParameter exp_param,
* with ExpLayer options:
* - scale (\b optional, default 1) the scale @f$ \alpha @f$
* - shift (\b optional, default 0) the shift @f$ \beta @f$
* - base (\b optional, default -1 for a value of @f$ e \approx 2.718 @f$)
* the base @f$ \gamma @f$
*/
explicit ExpLayer(const LayerParameter& param)
: NeuronLayer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_EXP;
}
protected:
/**
* @param bottom input Blob vector (length 1)
* -# @f$ (N \times C \times H \times W) @f$
* the inputs @f$ x @f$
* @param top output Blob vector (length 1)
* -# @f$ (N \times C \times H \times W) @f$
* the computed outputs @f$
* y = \gamma ^ {\alpha x + \beta}
* @f$
*/
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
/**
* @brief Computes the error gradient w.r.t. the exp inputs.
*
* @param top output Blob vector (length 1), providing the error gradient with
* respect to the outputs
* -# @f$ (N \times C \times H \times W) @f$
* containing error gradients @f$ \frac{\partial E}{\partial y} @f$
* with respect to computed outputs @f$ y @f$
* @param propagate_down see Layer::Backward.
* @param bottom input Blob vector (length 1)
* -# @f$ (N \times C \times H \times W) @f$
* the inputs @f$ x @f$; Backward fills their diff with
* gradients @f$
* \frac{\partial E}{\partial x} =
* \frac{\partial E}{\partial y} y \alpha \log_e(gamma)
* @f$ if propagate_down[0]
*/
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
Dtype inner_scale_, outer_scale_;
};
/**
* @brief Computes @f$ y = (\alpha x + \beta) ^ \gamma @f$,
* as specified by the scale @f$ \alpha @f$, shift @f$ \beta @f$,
* and power @f$ \gamma @f$.
*/
template <typename Dtype>
class PowerLayer : public NeuronLayer<Dtype> {
public:
/**
* @param param provides PowerParameter power_param,
* with PowerLayer options:
* - scale (\b optional, default 1) the scale @f$ \alpha @f$
* - shift (\b optional, default 0) the shift @f$ \beta @f$
* - power (\b optional, default 1) the power @f$ \gamma @f$
*/
explicit PowerLayer(const LayerParameter& param)
: NeuronLayer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_POWER;
}
protected:
/**
* @param bottom input Blob vector (length 1)
* -# @f$ (N \times C \times H \times W) @f$
* the inputs @f$ x @f$
* @param top output Blob vector (length 1)
* -# @f$ (N \times C \times H \times W) @f$
* the computed outputs @f$
* y = (\alpha x + \beta) ^ \gamma
* @f$
*/
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
/**
* @brief Computes the error gradient w.r.t. the power inputs.
*
* @param top output Blob vector (length 1), providing the error gradient with
* respect to the outputs
* -# @f$ (N \times C \times H \times W) @f$
* containing error gradients @f$ \frac{\partial E}{\partial y} @f$
* with respect to computed outputs @f$ y @f$
* @param propagate_down see Layer::Backward.
* @param bottom input Blob vector (length 1)
* -# @f$ (N \times C \times H \times W) @f$
* the inputs @f$ x @f$; Backward fills their diff with
* gradients @f$
* \frac{\partial E}{\partial x} =
* \frac{\partial E}{\partial y}
* \alpha \gamma (\alpha x + \beta) ^ {\gamma - 1} =
* \frac{\partial E}{\partial y}
* \frac{\alpha \gamma y}{\alpha x + \beta}
* @f$ if propagate_down[0]
*/
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
/// @brief @f$ \gamma @f$ from layer_param_.power_param()
Dtype power_;
/// @brief @f$ \alpha @f$ from layer_param_.power_param()
Dtype scale_;
/// @brief @f$ \beta @f$ from layer_param_.power_param()
Dtype shift_;
/// @brief Result of @f$ \alpha \gamma @f$
Dtype diff_scale_;
};
/**
* @brief Rectified Linear Unit non-linearity @f$ y = \max(0, x) @f$.
* The simple max is fast to compute, and the function does not saturate.
*/
template <typename Dtype>
class ReLULayer : public NeuronLayer<Dtype> {
public:
/**
* @param param provides ReLUParameter relu_param,
* with ReLULayer options:
* - negative_slope (\b optional, default 0).
* the value @f$ \nu @f$ by which negative values are multiplied.
*/
explicit ReLULayer(const LayerParameter& param)
: NeuronLayer<Dtype>(param) {}
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_RELU;
}
protected:
/**
* @param bottom input Blob vector (length 1)
* -# @f$ (N \times C \times H \times W) @f$
* the inputs @f$ x @f$
* @param top output Blob vector (length 1)
* -# @f$ (N \times C \times H \times W) @f$
* the computed outputs @f$
* y = \max(0, x)
* @f$ by default. If a non-zero negative_slope @f$ \nu @f$ is provided,
* the computed outputs are @f$ y = \max(0, x) + \nu \min(0, x) @f$.
*/
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
/**
* @brief Computes the error gradient w.r.t. the ReLU inputs.
*
* @param top output Blob vector (length 1), providing the error gradient with
* respect to the outputs
* -# @f$ (N \times C \times H \times W) @f$
* containing error gradients @f$ \frac{\partial E}{\partial y} @f$
* with respect to computed outputs @f$ y @f$
* @param propagate_down see Layer::Backward.
* @param bottom input Blob vector (length 1)
* -# @f$ (N \times C \times H \times W) @f$
* the inputs @f$ x @f$; Backward fills their diff with
* gradients @f$
* \frac{\partial E}{\partial x} = \left\{
* \begin{array}{lr}
* 0 & \mathrm{if} \; x \le 0 \\
* \frac{\partial E}{\partial y} & \mathrm{if} \; x > 0
* \end{array} \right.
* @f$ if propagate_down[0], by default.
* If a non-zero negative_slope @f$ \nu @f$ is provided,
* the computed gradients are @f$
* \frac{\partial E}{\partial x} = \left\{
* \begin{array}{lr}
* \nu \frac{\partial E}{\partial y} & \mathrm{if} \; x \le 0 \\
* \frac{\partial E}{\partial y} & \mathrm{if} \; x > 0
* \end{array} \right.
* @f$.
*/
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
};
#ifdef USE_CUDNN
/**
* @brief CuDNN acceleration of ReLULayer.
*/
template <typename Dtype>
class CuDNNReLULayer : public ReLULayer<Dtype> {
public:
explicit CuDNNReLULayer(const LayerParameter& param)
: ReLULayer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual ~CuDNNReLULayer();
protected:
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
bool handles_setup_;
cudnnHandle_t handle_;
cudnnTensorDescriptor_t bottom_desc_;
cudnnTensorDescriptor_t top_desc_;
};
#endif
/**
* @brief Sigmoid function non-linearity @f$
* y = (1 + \exp(-x))^{-1}
* @f$, a classic choice in neural networks.
*
* Note that the gradient vanishes as the values move away from 0.
* The ReLULayer is often a better choice for this reason.
*/
template <typename Dtype>
class SigmoidLayer : public NeuronLayer<Dtype> {
public:
explicit SigmoidLayer(const LayerParameter& param)
: NeuronLayer<Dtype>(param) {}
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_SIGMOID;
}
protected:
/**
* @param bottom input Blob vector (length 1)
* -# @f$ (N \times C \times H \times W) @f$
* the inputs @f$ x @f$
* @param top output Blob vector (length 1)
* -# @f$ (N \times C \times H \times W) @f$
* the computed outputs @f$
* y = (1 + \exp(-x))^{-1}
* @f$
*/
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
/**
* @brief Computes the error gradient w.r.t. the sigmoid inputs.
*
* @param top output Blob vector (length 1), providing the error gradient with
* respect to the outputs
* -# @f$ (N \times C \times H \times W) @f$
* containing error gradients @f$ \frac{\partial E}{\partial y} @f$
* with respect to computed outputs @f$ y @f$
* @param propagate_down see Layer::Backward.
* @param bottom input Blob vector (length 1)
* -# @f$ (N \times C \times H \times W) @f$
* the inputs @f$ x @f$; Backward fills their diff with
* gradients @f$
* \frac{\partial E}{\partial x}
* = \frac{\partial E}{\partial y} y (1 - y)
* @f$ if propagate_down[0]
*/
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
};
#ifdef USE_CUDNN
/**
* @brief CuDNN acceleration of SigmoidLayer.
*/
template <typename Dtype>
class CuDNNSigmoidLayer : public SigmoidLayer<Dtype> {
public:
explicit CuDNNSigmoidLayer(const LayerParameter& param)
: SigmoidLayer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual ~CuDNNSigmoidLayer();
protected:
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
bool handles_setup_;
cudnnHandle_t handle_;
cudnnTensorDescriptor_t bottom_desc_;
cudnnTensorDescriptor_t top_desc_;
};
#endif
/**
* @brief TanH hyperbolic tangent non-linearity @f$
* y = \frac{\exp(2x) - 1}{\exp(2x) + 1}
* @f$, popular in auto-encoders.
*
* Note that the gradient vanishes as the values move away from 0.
* The ReLULayer is often a better choice for this reason.
*/
template <typename Dtype>
class TanHLayer : public NeuronLayer<Dtype> {
public:
explicit TanHLayer(const LayerParameter& param)
: NeuronLayer<Dtype>(param) {}
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_TANH;
}
protected:
/**
* @param bottom input Blob vector (length 1)
* -# @f$ (N \times C \times H \times W) @f$
* the inputs @f$ x @f$
* @param top output Blob vector (length 1)
* -# @f$ (N \times C \times H \times W) @f$
* the computed outputs @f$
* y = \frac{\exp(2x) - 1}{\exp(2x) + 1}
* @f$
*/
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
/**
* @brief Computes the error gradient w.r.t. the sigmoid inputs.
*
* @param top output Blob vector (length 1), providing the error gradient with
* respect to the outputs
* -# @f$ (N \times C \times H \times W) @f$
* containing error gradients @f$ \frac{\partial E}{\partial y} @f$
* with respect to computed outputs @f$ y @f$
* @param propagate_down see Layer::Backward.
* @param bottom input Blob vector (length 1)
* -# @f$ (N \times C \times H \times W) @f$
* the inputs @f$ x @f$; Backward fills their diff with
* gradients @f$
* \frac{\partial E}{\partial x}
* = \frac{\partial E}{\partial y}
* \left(1 - \left[\frac{\exp(2x) - 1}{exp(2x) + 1} \right]^2 \right)
* = \frac{\partial E}{\partial y} (1 - y^2)
* @f$ if propagate_down[0]
*/
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
};
#ifdef USE_CUDNN
/**
* @brief CuDNN acceleration of TanHLayer.
*/
template <typename Dtype>
class CuDNNTanHLayer : public TanHLayer<Dtype> {
public:
explicit CuDNNTanHLayer(const LayerParameter& param)
: TanHLayer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual ~CuDNNTanHLayer();
protected:
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
bool handles_setup_;
cudnnHandle_t handle_;
cudnnTensorDescriptor_t bottom_desc_;
cudnnTensorDescriptor_t top_desc_;
};
#endif
/**
* @brief Tests whether the input exceeds a threshold: outputs 1 for inputs
* above threshold; 0 otherwise.
*/
template <typename Dtype>
class ThresholdLayer : public NeuronLayer<Dtype> {
public:
/**
* @param param provides ThresholdParameter threshold_param,
* with ThresholdLayer options:
* - threshold (\b optional, default 0).
* the threshold value @f$ t @f$ to which the input values are compared.
*/
explicit ThresholdLayer(const LayerParameter& param)
: NeuronLayer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual inline LayerParameter_LayerType type() const {
return LayerParameter_LayerType_THRESHOLD;
}
protected:
/**
* @param bottom input Blob vector (length 1)
* -# @f$ (N \times C \times H \times W) @f$
* the inputs @f$ x @f$
* @param top output Blob vector (length 1)
* -# @f$ (N \times C \times H \times W) @f$
* the computed outputs @f$
* y = \left\{
* \begin{array}{lr}
* 0 & \mathrm{if} \; x \le t \\
* 1 & \mathrm{if} \; x > t
* \end{array} \right.
* @f$
*/
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
/// @brief Not implemented (non-differentiable function)
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
NOT_IMPLEMENTED;
}
Dtype threshold_;
};
} // namespace caffe
#endif // CAFFE_NEURON_LAYERS_HPP_