forked from VQAssessment/FAST-VQA-and-FasterVQA
-
Notifications
You must be signed in to change notification settings - Fork 1
/
fusion_datasets.py
816 lines (680 loc) · 31.1 KB
/
fusion_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
import decord
from decord import VideoReader
from decord import cpu, gpu
import glob
import os.path as osp
import numpy as np
import torch, torchvision
from tqdm import tqdm
import cv2
import random
import copy
import skvideo.io
random.seed(42)
decord.bridge.set_bridge("torch")
def get_spatial_fragments(
video,
fragments_h=7,
fragments_w=7,
fsize_h=32,
fsize_w=32,
aligned=32,
nfrags=1,
random=False,
random_upsample=False,
fallback_type="upsample",
**kwargs,
):
size_h = fragments_h * fsize_h
size_w = fragments_w * fsize_w
## video: [C,T,H,W]
## situation for images
if video.shape[1] == 1:
aligned = 1
dur_t, res_h, res_w = video.shape[-3:]
ratio = min(res_h / size_h, res_w / size_w)
if fallback_type == "upsample" and ratio < 1:
ovideo = video
video = torch.nn.functional.interpolate(
video / 255.0, scale_factor=1 / ratio, mode="bilinear"
)
video = (video * 255.0).type_as(ovideo)
if random_upsample:
randratio = random.random() * 0.5 + 1
video = torch.nn.functional.interpolate(
video / 255.0, scale_factor=randratio, mode="bilinear"
)
video = (video * 255.0).type_as(ovideo)
assert dur_t % aligned == 0, "Please provide match vclip and align index"
size = size_h, size_w
## make sure that sampling will not run out of the picture
hgrids = torch.LongTensor(
[min(res_h // fragments_h * i, res_h - fsize_h) for i in range(fragments_h)]
)
wgrids = torch.LongTensor(
[min(res_w // fragments_w * i, res_w - fsize_w) for i in range(fragments_w)]
)
hlength, wlength = res_h // fragments_h, res_w // fragments_w
if random:
print("This part is deprecated. Please remind that.")
if res_h > fsize_h:
rnd_h = torch.randint(
res_h - fsize_h, (len(hgrids), len(wgrids), dur_t // aligned)
)
else:
rnd_h = torch.zeros((len(hgrids), len(wgrids), dur_t // aligned)).int()
if res_w > fsize_w:
rnd_w = torch.randint(
res_w - fsize_w, (len(hgrids), len(wgrids), dur_t // aligned)
)
else:
rnd_w = torch.zeros((len(hgrids), len(wgrids), dur_t // aligned)).int()
else:
if hlength > fsize_h:
rnd_h = torch.randint(
hlength - fsize_h, (len(hgrids), len(wgrids), dur_t // aligned)
)
else:
rnd_h = torch.zeros((len(hgrids), len(wgrids), dur_t // aligned)).int()
if wlength > fsize_w:
rnd_w = torch.randint(
wlength - fsize_w, (len(hgrids), len(wgrids), dur_t // aligned)
)
else:
rnd_w = torch.zeros((len(hgrids), len(wgrids), dur_t // aligned)).int()
target_video = torch.zeros(video.shape[:-2] + size).to(video.device)
# target_videos = []
for i, hs in enumerate(hgrids):
for j, ws in enumerate(wgrids):
for t in range(dur_t // aligned):
t_s, t_e = t * aligned, (t + 1) * aligned
h_s, h_e = i * fsize_h, (i + 1) * fsize_h
w_s, w_e = j * fsize_w, (j + 1) * fsize_w
if random:
h_so, h_eo = rnd_h[i][j][t], rnd_h[i][j][t] + fsize_h
w_so, w_eo = rnd_w[i][j][t], rnd_w[i][j][t] + fsize_w
else:
h_so, h_eo = hs + rnd_h[i][j][t], hs + rnd_h[i][j][t] + fsize_h
w_so, w_eo = ws + rnd_w[i][j][t], ws + rnd_w[i][j][t] + fsize_w
target_video[:, t_s:t_e, h_s:h_e, w_s:w_e] = video[
:, t_s:t_e, h_so:h_eo, w_so:w_eo
]
# target_videos.append(video[:,t_s:t_e,h_so:h_eo,w_so:w_eo])
# target_video = torch.stack(target_videos, 0).reshape((dur_t // aligned, fragments, fragments,) + target_videos[0].shape).permute(3,0,4,1,5,2,6)
# target_video = target_video.reshape((-1, dur_t,) + size) ## Splicing Fragments
return target_video
def get_resized_video(
video,
size_h=224,
size_w=224,
**kwargs,
):
ovideo = video
video = torch.nn.functional.interpolate(
video / 255.0, size=(size_h, size_w), mode="bilinear"
)
video = (video * 255.0).type_as(ovideo)
return video
def get_arp_resized_video(
video,
short_edge=224,
train=False,
**kwargs,
):
if train: ## if during training, will random crop into square and then resize
res_h, res_w = video.shape[-2:]
ori_short_edge = min(video.shape[-2:])
if res_h > ori_short_edge:
rnd_h = random.randrange(res_h - ori_short_edge)
video = video[...,rnd_h:rnd_h+ori_short_edge,:]
elif res_w > ori_short_edge:
rnd_w = random.randrange(res_w - ori_short_edge)
video = video[...,:,rnd_h:rnd_h+ori_short_edge]
ori_short_edge = min(video.shape[-2:])
scale_factor = short_edge / ori_short_edge
ovideo = video
video = torch.nn.functional.interpolate(
video / 255.0, scale_factors=scale_factor, mode="bilinear"
)
video = (video * 255.0).type_as(ovideo)
return video
def get_arp_fragment_video(
video,
short_fragments=7,
fsize=32,
train=False,
**kwargs,
):
if train: ## if during training, will random crop into square and then get fragments
res_h, res_w = video.shape[-2:]
ori_short_edge = min(video.shape[-2:])
if res_h > ori_short_edge:
rnd_h = random.randrange(res_h - ori_short_edge)
video = video[...,rnd_h:rnd_h+ori_short_edge,:]
elif res_w > ori_short_edge:
rnd_w = random.randrange(res_w - ori_short_edge)
video = video[...,:,rnd_h:rnd_h+ori_short_edge]
kwargs["fsize_h"], kwargs["fsize_w"] = fsize, fsize
res_h, res_w = video.shape[-2:]
if res_h > res_w:
kwargs["fragments_w"] = short_fragments
kwargs["fragments_h"] = int(short_fragments * res_h / res_w)
else:
kwargs["fragments_h"] = short_fragments
kwargs["fragments_w"] = int(short_fragments * res_w / res_h)
return get_spatial_fragments(video, **kwargs)
def get_cropped_video(
video,
size_h=224,
size_w=224,
**kwargs,
):
kwargs["fragments_h"], kwargs["fragments_w"] = 1, 1
kwargs["fsize_h"], kwargs["fsize_w"] = size_h, size_w
return get_spatial_fragments(video, **kwargs)
def get_single_sample(
video,
sample_type="resize",
**kwargs,
):
if sample_type.startswith("resize"):
video = get_resized_video(video, **kwargs)
elif sample_type.startswith("arp_resize"):
video = get_arp_resized_video(video, **kwargs)
elif sample_type.startswith("fragments"):
video = get_spatial_fragments(video, **kwargs)
elif sample_type.startswith("arp_fragments"):
video = get_arp_fragment_video(video, **kwargs)
elif sample_type.startswith("crop"):
video = get_cropped_video(video, **kwargs)
return video
def get_spatial_samples(
video,
random_crop=0, ## 1: ARP-kept Crop; 2: Square-like Crop
sample_types={"resize": {}, "fragments": {}}, ## resize | arp_resize | crop | fragments
):
if random_crop == 1:
print("Alert!")
## Random Crop but keep the ARP
res_h, res_w = video.shape[-2:]
rnd_ratio = random.random() * 0.2 + 0.8
new_h, new_w = int(rnd_ratio * res_h), int(rnd_ratio * res_w)
rnd_h = random.randrange(res_h - new_h)
rnd_w = random.randrange(res_w - new_w)
video = video[..., rnd_h:rnd_hn+new_h, rnd_w:rnd_w+new_w]
ovideo = video
video = torch.nn.functional.interpolate(
video / 255.0, scale_factor=random.random() * 0.3 + 1.0, mode="bilinear"
)
video = (video * 255.0).type_as(ovideo)
if random_crop == 2:
## Random Crop into a Size similar to Square
rnd_ratio = random.random() * 0.2 + 0.8
res_h, res_w = video.shape[-2:]
new_h = new_w = int(rnd_ratio * min(res_h, res_w))
rnd_h = random.randrange(res_h - new_h)
rnd_w = random.randrange(res_w - new_w)
video = video[..., rnd_h:rnd_h+new_h, rnd_w:rnd_w+new_w]
sampled_video = {}
for sample_type, arg in sample_types.items():
sampled_video[sample_type] = get_single_sample(video, sample_type,
**arg)
return sampled_video
def get_spatial_and_temporal_samples(
video_path,
sample_types,
samplers,
is_train=False,
):
video = {}
if video_path.endswith(".yuv"):
## This is only an adaptation to LIVE-Qualcomm
ovideo = skvideo.io.vread(video_path, 1080, 1920, inputdict={'-pix_fmt':'yuvj420p'})
for stype in self.samplers:
frame_inds = self.samplers[stype](ovideo.shape[0], is_train)
imgs = [torch.from_numpy(video[idx]) for idx in frame_inds]
video[stype] = torch.stack(imgs, 0).permute(3, 0, 1, 2)
else:
vreader = VideoReader(video_path)
### Avoid duplicated video decoding!!! Important!!!!
all_frame_inds = []
frame_inds = {}
for stype in samplers:
frame_inds[stype] = samplers[stype](len(vreader), is_train)
all_frame_inds.append(frame_inds[stype])
### Each frame is only decoded one time!!!
all_frame_inds = np.concatenate(all_frame_inds,0)
frame_dict = {idx: vreader[idx] for idx in np.unique(all_frame_inds)}
for stype in samplers:
imgs = [frame_dict[idx] for idx in frame_inds[stype]]
video[stype] = torch.stack(imgs, 0).permute(3, 0, 1, 2)
sampled_video = {}
for stype, sopt in sample_types.items():
sampled_video[stype] = get_single_sample(video[stype], stype,
**sopt)
return sampled_video, frame_inds
class SampleFrames:
def __init__(self, clip_len, frame_interval=1, num_clips=1):
self.clip_len = clip_len
self.frame_interval = frame_interval
self.num_clips = num_clips
def _get_train_clips(self, num_frames):
"""Get clip offsets in train mode.
It will calculate the average interval for selected frames,
and randomly shift them within offsets between [0, avg_interval].
If the total number of frames is smaller than clips num or origin
frames length, it will return all zero indices.
Args:
num_frames (int): Total number of frame in the video.
Returns:
np.ndarray: Sampled frame indices in train mode.
"""
ori_clip_len = self.clip_len * self.frame_interval
avg_interval = (num_frames - ori_clip_len + 1) // self.num_clips
if avg_interval > 0:
base_offsets = np.arange(self.num_clips) * avg_interval
clip_offsets = base_offsets + np.random.randint(
avg_interval, size=self.num_clips
)
elif num_frames > max(self.num_clips, ori_clip_len):
clip_offsets = np.sort(
np.random.randint(num_frames - ori_clip_len + 1, size=self.num_clips)
)
elif avg_interval == 0:
ratio = (num_frames - ori_clip_len + 1.0) / self.num_clips
clip_offsets = np.around(np.arange(self.num_clips) * ratio)
else:
clip_offsets = np.zeros((self.num_clips,), dtype=np.int)
return clip_offsets
def _get_test_clips(self, num_frames, start_index=0):
"""Get clip offsets in test mode.
Calculate the average interval for selected frames, and shift them
fixedly by avg_interval/2.
Args:
num_frames (int): Total number of frame in the video.
Returns:
np.ndarray: Sampled frame indices in test mode.
"""
ori_clip_len = self.clip_len * self.frame_interval
avg_interval = (num_frames - ori_clip_len + 1) / float(self.num_clips)
if num_frames > ori_clip_len - 1:
base_offsets = np.arange(self.num_clips) * avg_interval
clip_offsets = (base_offsets + avg_interval / 2.0).astype(np.int32)
else:
clip_offsets = np.zeros((self.num_clips,), dtype=np.int32)
return clip_offsets
def __call__(self, total_frames, train=False, start_index=0):
"""Perform the SampleFrames loading.
Args:
results (dict): The resulting dict to be modified and passed
to the next transform in pipeline.
"""
if train:
clip_offsets = self._get_train_clips(total_frames)
else:
clip_offsets = self._get_test_clips(total_frames)
frame_inds = (
clip_offsets[:, None]
+ np.arange(self.clip_len)[None, :] * self.frame_interval
)
frame_inds = np.concatenate(frame_inds)
frame_inds = frame_inds.reshape((-1, self.clip_len))
frame_inds = np.mod(frame_inds, total_frames)
frame_inds = np.concatenate(frame_inds) + start_index
return frame_inds.astype(np.int32)
import numpy as np
import random
class FragmentSampleFrames:
def __init__(self, fsize_t, fragments_t, frame_interval=1, num_clips=1, drop_rate=0., ):
self.fragments_t = fragments_t
self.fsize_t = fsize_t
self.size_t = fragments_t * fsize_t
self.frame_interval = frame_interval
self.num_clips = num_clips
self.drop_rate = drop_rate
def get_frame_indices(self, num_frames, train=False):
tgrids = np.array(
[num_frames // self.fragments_t * i for i in range(self.fragments_t)],
dtype=np.int32,
)
tlength = num_frames // self.fragments_t
if tlength > self.fsize_t * self.frame_interval:
rnd_t = np.random.randint(
0, tlength - self.fsize_t * self.frame_interval, size=len(tgrids)
)
else:
rnd_t = np.zeros(len(tgrids), dtype=np.int32)
ranges_t = (
np.arange(self.fsize_t)[None, :] * self.frame_interval
+ rnd_t[:, None]
+ tgrids[:, None]
)
drop = random.sample(list(range(self.fragments_t)), int(self.fragments_t * self.drop_rate))
dropped_ranges_t = []
for i, rt in enumerate(ranges_t):
if i not in drop:
dropped_ranges_t.append(rt)
return np.concatenate(dropped_ranges_t)
def __call__(self, total_frames, train=False, start_index=0):
frame_inds = []
for i in range(self.num_clips):
frame_inds += [self.get_frame_indices(total_frames)]
frame_inds = np.concatenate(frame_inds)
frame_inds = np.mod(frame_inds + start_index, total_frames)
return frame_inds.astype(np.int32)
class SimpleDataset(torch.utils.data.Dataset):
def __init__(self, opt):
## opt is a dictionary that includes options for video sampling
super().__init__()
self.video_infos = []
self.ann_file = opt["anno_file"]
self.data_prefix = opt["data_prefix"]
self.opt = opt
self.sample_type = opt["sample_type"]
self.phase = opt["phase"]
self.mean = torch.FloatTensor([123.675, 116.28, 103.53])
self.std = torch.FloatTensor([58.395, 57.12, 57.375])
self.sampler = SampleFrames(opt["clip_len"], opt["frame_interval"], opt["num_clips"])
if isinstance(self.ann_file, list):
self.video_infos = self.ann_file
else:
with open(self.ann_file, "r") as fin:
for line in fin:
line_split = line.strip().split(",")
filename, _, _, label = line_split
label = float(label)
filename = osp.join(self.data_prefix, filename)
self.video_infos.append(dict(filename=filename, label=label))
def __getitem__(self, index):
video_info = self.video_infos[index]
filename = video_info["filename"]
label = video_info["label"]
vreader = VideoReader(filename)
## Read Original Frames
frame_inds = self.sampler(len(vreader), self.phase == "train")
frame_dict = {idx: vreader[idx] for idx in np.unique(frame_inds)}
imgs = [frame_dict[idx] for idx in frame_inds]
img_shape = imgs[0].shape
video = torch.stack(imgs, 0)
video = video.permute(3, 0, 1, 2)
## Process Frames
sampled_video = get_single_sample(video,
self.sample_type,
**self.opt["sampling_args"],
)
sampled_video = ((sampled_video.permute(1, 2, 3, 0) - self.mean) / self.std).permute(3, 0, 1, 2)
return {
"video": sampled_video,
"num_clips": self.opt["num_clips"],
"frame_inds": frame_inds,
"gt_label": label,
"name": osp.basename(video_info["filename"]),
}
def __len__(self):
return len(self.video_infos)
class FusionDataset(torch.utils.data.Dataset):
def __init__(self, opt):
## opt is a dictionary that includes options for video sampling
super().__init__()
self.video_infos = []
self.ann_file = opt["anno_file"]
self.data_prefix = opt["data_prefix"]
self.opt = opt
self.sample_types = opt["sample_types"]
self.data_backend = opt.get("data_backend", "disk")
if self.data_backend == "petrel":
from petrel_client import client
self.client = client.Client(enable_mc=True)
self.phase = opt["phase"]
self.crop = opt.get("random_crop", False)
self.mean = torch.FloatTensor([123.675, 116.28, 103.53])
self.std = torch.FloatTensor([58.395, 57.12, 57.375])
self.samplers = {}
for stype, sopt in opt["sample_types"].items():
if "t_frag" not in sopt:
self.samplers[stype] = SampleFrames(sopt["clip_len"], sopt["frame_interval"], sopt["num_clips"])
else:
self.samplers[stype] = FragmentSampleFrames(sopt["clip_len"] // sopt["t_frag"], sopt["t_frag"], sopt["frame_interval"], sopt["num_clips"])
print(stype+" branch sampled frames:", self.samplers[stype](240, self.phase == "train"))
if isinstance(self.ann_file, list):
self.video_infos = self.ann_file
else:
try:
with open(self.ann_file, "r") as fin:
for line in fin:
line_split = line.strip().split(",")
filename, _, _, label = line_split
label = float(label)
filename = osp.join(self.data_prefix, filename)
self.video_infos.append(dict(filename=filename, label=label))
except:
#### No Label Testing
video_filenames = sorted(glob.glob(self.data_prefix+"/*.mp4"))
print(video_filenames)
for filename in video_filenames:
self.video_infos.append(dict(filename=filename, label=-1))
def refresh_hypers(self):
if not hasattr(self, "initial_sample_types"):
self.initial_sample_types = copy.deepcopy(self.sample_types)
types = self.sample_types
if "fragments_up" in types:
ubh, ubw = self.initial_sample_types["fragments_up"]["fragments_h"] + 1, self.initial_sample_types["fragments_up"]["fragments_w"] + 1
lbh, lbw = self.initial_sample_types["fragments"]["fragments_h"] + 1, self.initial_sample_types["fragments"]["fragments_w"] + 1
dh, dw = types["fragments_up"]["fragments_h"], types["fragments_up"]["fragments_w"]
types["fragments_up"]["fragments_h"] = random.randrange(max(lbh, dh-1), min(ubh, dh+2))
types["fragments_up"]["fragments_w"] = random.randrange(max(lbw, dw-1), min(ubw, dw+2))
if "resize_up" in types:
types["resize_up"]["size_h"] = types["fragments_up"]["fragments_h"] * types["fragments_up"]["fsize_h"]
types["resize_up"]["size_w"] = types["fragments_up"]["fragments_w"] * types["fragments_up"]["fsize_w"]
self.sample_types.update(types)
#print("Refreshed sample hyper-paremeters:", self.sample_types)
def __getitem__(self, index):
video_info = self.video_infos[index]
filename = video_info["filename"]
label = video_info["label"]
## Read Original Frames
## Process Frames
data, frame_inds = get_spatial_and_temporal_samples(filename,
self.sample_types,
self.samplers,
self.phase == "train",
)
for k, v in data.items():
data[k] = ((v.permute(1, 2, 3, 0) - self.mean) / self.std).permute(3, 0, 1, 2)
data["num_clips"] = {}
for stype, sopt in self.sample_types.items():
data["num_clips"][stype] = sopt["num_clips"]
data["frame_inds"] = frame_inds
data["gt_label"] = label
data["name"] = osp.basename(video_info["filename"])
return data
def __len__(self):
return len(self.video_infos)
class FusionDatasetK400(torch.utils.data.Dataset):
def __init__(self, opt):
## opt is a dictionary that includes options for video sampling
super().__init__()
self.video_infos = []
self.ann_file = opt["anno_file"]
self.data_prefix = opt["data_prefix"]
self.opt = opt
self.sample_types = opt["sample_types"]
self.data_backend = opt.get("data_backend", "disk")
if self.data_backend == "petrel":
from petrel_client import client
self.client = client.Client(enable_mc=True)
self.phase = opt["phase"]
self.crop = opt.get("random_crop", False)
self.mean = torch.FloatTensor([123.675, 116.28, 103.53])
self.std = torch.FloatTensor([58.395, 57.12, 57.375])
if "t_frag" not in opt:
self.sampler = SampleFrames(opt["clip_len"], opt["frame_interval"], opt["num_clips"])
else:
self.sampler = FragmentSampleFrames(opt["clip_len"] // opt["t_frag"], opt["t_frag"], opt["frame_interval"], opt["num_clips"])
print(self.sampler(240, self.phase == "train"))
if isinstance(self.ann_file, list):
self.video_infos = self.ann_file
else:
try:
print(self.ann_file)
with open(self.ann_file, "r") as fin:
for line in fin:
line_split = line.strip().split(",")
filename, _, _, label = line_split
label = int(label)
filename = osp.join(self.data_prefix, filename)
self.video_infos.append(dict(filename=filename, label=label))
except:
#### No Label Testing
video_filenames = sorted(glob.glob(self.data_prefix+"/*.mp4"))
print(video_filenames)
for filename in video_filenames:
self.video_infos.append(dict(filename=filename, label=-1))
def refresh_hypers(self):
if not hasattr(self, "initial_sample_types"):
self.initial_sample_types = copy.deepcopy(self.sample_types)
types = self.sample_types
if "fragments_up" in types:
ubh, ubw = self.initial_sample_types["fragments_up"]["fragments_h"] + 1, self.initial_sample_types["fragments_up"]["fragments_w"] + 1
lbh, lbw = self.initial_sample_types["fragments"]["fragments_h"] + 1, self.initial_sample_types["fragments"]["fragments_w"] + 1
dh, dw = types["fragments_up"]["fragments_h"], types["fragments_up"]["fragments_w"]
types["fragments_up"]["fragments_h"] = random.randrange(max(lbh, dh-1), min(ubh, dh+2))
types["fragments_up"]["fragments_w"] = random.randrange(max(lbw, dw-1), min(ubw, dw+2))
if "resize_up" in types:
types["resize_up"]["size_h"] = types["fragments_up"]["fragments_h"] * types["fragments_up"]["fsize_h"]
types["resize_up"]["size_w"] = types["fragments_up"]["fragments_w"] * types["fragments_up"]["fsize_w"]
self.sample_types.update(types)
#print("Refreshed sample hyper-paremeters:", self.sample_types)
def __getitem__(self, index):
video_info = self.video_infos[index]
filename = video_info["filename"]
label = video_info["label"]
## Read Original Frames
if filename.endswith(".yuv"):
## This is only an adaptation to LIVE-Qualcomm
video = skvideo.io.vread(filename, 1080, 1920, inputdict={'-pix_fmt':'yuvj420p'})
frame_inds = self.sampler(video.shape[0], self.phase == "train")
imgs = [torch.from_numpy(video[idx]) for idx in frame_inds]
else:
vreader = VideoReader(filename)
frame_inds = self.sampler(len(vreader), self.phase == "train")
frame_dict = {idx: vreader[idx] for idx in np.unique(frame_inds)}
imgs = [frame_dict[idx] for idx in frame_inds]
img_shape = imgs[0].shape
video = torch.stack(imgs, 0)
video = video.permute(3, 0, 1, 2)
## Process Frames
data = get_spatial_samples(video,
self.crop,
self.sample_types,
)
for k, v in data.items():
data[k] = ((v.permute(1, 2, 3, 0) - self.mean) / self.std).permute(3, 0, 1, 2)
data["num_clips"] = self.opt["num_clips"]
data["frame_inds"] = frame_inds
data["gt_label"] = label
data["name"] = osp.basename(video_info["filename"])
return data
def __len__(self):
return len(self.video_infos)
class LSVQPatchDataset(torch.utils.data.Dataset):
def __init__(self, opt):
## opt is a dictionary that includes options for video sampling
super().__init__()
self.video_infos = []
self.ann_file = opt["anno_file"]
self.data_prefix = opt["data_prefix"]
self.opt = opt
self.sample_types = opt["sample_types"]
self.data_backend = opt.get("data_backend", "disk")
if self.data_backend == "petrel":
from petrel_client import client
self.client = client.Client(enable_mc=True)
self.phase = opt["phase"]
self.crop = opt.get("random_crop", False)
self.mean = torch.FloatTensor([123.675, 116.28, 103.53])
self.std = torch.FloatTensor([58.395, 57.12, 57.375])
if "t_frag" not in opt:
self.sampler = SampleFrames(opt["clip_len"], opt["frame_interval"], opt["num_clips"])
else:
self.sampler = FragmentSampleFrames(opt["clip_len"] // opt["t_frag"], opt["t_frag"], opt["frame_interval"], opt["num_clips"])
print(self.sampler(240, self.phase == "train"))
if isinstance(self.ann_file, list):
self.video_infos = self.ann_file
else:
with open(self.ann_file, "r") as fin:
for line in fin:
line_split = line.strip().split(",")
filename, _, _, label, coords, _ = line_split
coords = [int(e) for e in coords[2:-1].split(";")]
label = float(label)
filename = osp.join(self.data_prefix, filename)
self.video_infos.append(dict(filename=filename, label=label, coords=coords))
def refresh_hypers(self):
if not hasattr(self, "initial_sample_types"):
self.initial_sample_types = copy.deepcopy(self.sample_types)
types = self.sample_types
if "fragments_up" in types:
ubh, ubw = self.initial_sample_types["fragments_up"]["fragments_h"] + 1, self.initial_sample_types["fragments_up"]["fragments_w"] + 1
lbh, lbw = self.initial_sample_types["fragments"]["fragments_h"] + 1, self.initial_sample_types["fragments"]["fragments_w"] + 1
dh, dw = types["fragments_up"]["fragments_h"], types["fragments_up"]["fragments_w"]
types["fragments_up"]["fragments_h"] = random.randrange(max(lbh, dh-1), min(ubh, dh+2))
types["fragments_up"]["fragments_w"] = random.randrange(max(lbw, dw-1), min(ubw, dw+2))
if "resize_up" in types:
types["resize_up"]["size_h"] = types["fragments_up"]["fragments_h"] * types["fragments_up"]["fsize_h"]
types["resize_up"]["size_w"] = types["fragments_up"]["fragments_w"] * types["fragments_up"]["fsize_w"]
self.sample_types.update(types)
#print("Refreshed sample hyper-paremeters:", self.sample_types)
def __getitem__(self, index):
video_info = self.video_infos[index]
filename = video_info["filename"]
label = video_info["label"]
x0, x1, y0, y1, ts, tt = video_info["coords"]
## Read Original Frames
vreader = VideoReader(filename)
frame_inds = self.sampler(min(len(vreader), tt-ts), self.phase == "train") + ts
frame_dict = {idx: vreader[idx] for idx in np.unique(frame_inds)}
imgs = [frame_dict[idx][y0:y1,x0:x1] for idx in frame_inds]
img_shape = imgs[0].shape
video = torch.stack(imgs, 0)
video = video.permute(3, 0, 1, 2)
## Process Frames
data = get_spatial_samples(video,
self.crop,
self.sample_types,
)
for k, v in data.items():
data[k] = ((v.permute(1, 2, 3, 0) - self.mean) / self.std).permute(3, 0, 1, 2)
data["num_clips"] = self.opt["num_clips"]
data["frame_inds"] = frame_inds
data["gt_label"] = label
data["name"] = osp.basename(video_info["filename"])
return data
def __len__(self):
return len(self.video_infos)
if __name__ == "__main__":
train_opt = {
"anno_file": "./examplar_data_labels/KoNViD/labels.txt",
"data_prefix": "../datasets/KoNViD",
"sample_type": "fragments",
"phase": "train",
"clip_len": 32,
"frame_interval": 2,
"num_clips": 1,
"sampling_args": {}
}
dataset = SimpleDataset(train_opt)
print(dataset[0]["video"].shape)
fusion_opt = {
"anno_file": "./examplar_data_labels/KoNViD/labels.txt",
"data_prefix": "../datasets/KoNViD",
"sample_types": {"fragments": dict(fragments_h=4,fragments_w=4),
"resize": dict(size_h=128, size_w=128)},
"phase": "train",
"clip_len": 32,
"frame_interval": 2,
"num_clips": 1,
"sampling_args": {}
}
dataset_2 = FusionDataset(fusion_opt)
print([(key, dataset_2[0][key].shape) for key in fusion_opt["sample_types"]])