forked from facebookresearch/fairseq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
337 lines (285 loc) · 12.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Train a new model on one or across multiple GPUs.
"""
import collections
import math
import random
import numpy as np
import torch
from fairseq import checkpoint_utils, distributed_utils, options, progress_bar, tasks, utils
from fairseq.data import iterators
from fairseq.trainer import Trainer
from fairseq.meters import AverageMeter, StopwatchMeter
def main(args, init_distributed=False):
utils.import_user_module(args)
assert args.max_tokens is not None or args.max_sentences is not None, \
'Must specify batch size either with --max-tokens or --max-sentences'
# Initialize CUDA and distributed training
if torch.cuda.is_available() and not args.cpu:
torch.cuda.set_device(args.device_id)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if init_distributed:
args.distributed_rank = distributed_utils.distributed_init(args)
if distributed_utils.is_master(args):
checkpoint_utils.verify_checkpoint_directory(args.save_dir)
# Print args
print(args)
# Setup task, e.g., translation, language modeling, etc.
task = tasks.setup_task(args)
# Load valid dataset (we load training data below, based on the latest checkpoint)
for valid_sub_split in args.valid_subset.split(','):
task.load_dataset(valid_sub_split, combine=False, epoch=0)
# Build model and criterion
model = task.build_model(args)
criterion = task.build_criterion(args)
print(model)
print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))
print('| num. model params: {} (num. trained: {})'.format(
sum(p.numel() for p in model.parameters()),
sum(p.numel() for p in model.parameters() if p.requires_grad),
))
# Build trainer
trainer = Trainer(args, task, model, criterion)
print('| training on {} GPUs'.format(args.distributed_world_size))
print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
args.max_tokens,
args.max_sentences,
))
# Load the latest checkpoint if one is available and restore the
# corresponding train iterator
extra_state, epoch_itr = checkpoint_utils.load_checkpoint(args, trainer)
# Train until the learning rate gets too small
max_epoch = args.max_epoch or math.inf
max_update = args.max_update or math.inf
lr = trainer.get_lr()
train_meter = StopwatchMeter()
train_meter.start()
valid_subsets = args.valid_subset.split(',')
while (
lr > args.min_lr
and (epoch_itr.epoch < max_epoch or (epoch_itr.epoch == max_epoch
and epoch_itr._next_epoch_itr is not None))
and trainer.get_num_updates() < max_update
):
# train for one epoch
train(args, trainer, task, epoch_itr)
if not args.disable_validation and epoch_itr.epoch % args.validate_interval == 0:
valid_losses = validate(args, trainer, task, epoch_itr, valid_subsets)
else:
valid_losses = [None]
# only use first validation loss to update the learning rate
lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])
# save checkpoint
if epoch_itr.epoch % args.save_interval == 0:
checkpoint_utils.save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
reload_dataset = ':' in getattr(args, 'data', '')
# sharded data: get train iterator for next epoch
epoch_itr = trainer.get_train_iterator(epoch_itr.epoch, load_dataset=reload_dataset)
train_meter.stop()
print('| done training in {:.1f} seconds'.format(train_meter.sum))
def train(args, trainer, task, epoch_itr):
"""Train the model for one epoch."""
# Update parameters every N batches
update_freq = args.update_freq[epoch_itr.epoch - 1] \
if epoch_itr.epoch <= len(args.update_freq) else args.update_freq[-1]
# Initialize data iterator
itr = epoch_itr.next_epoch_itr(
fix_batches_to_gpus=args.fix_batches_to_gpus,
shuffle=(epoch_itr.epoch >= args.curriculum),
)
itr = iterators.GroupedIterator(itr, update_freq)
progress = progress_bar.build_progress_bar(
args, itr, epoch_itr.epoch, no_progress_bar='simple',
)
extra_meters = collections.defaultdict(lambda: AverageMeter())
valid_subsets = args.valid_subset.split(',')
max_update = args.max_update or math.inf
for i, samples in enumerate(progress, start=epoch_itr.iterations_in_epoch):
log_output = trainer.train_step(samples)
if log_output is None:
continue
# log mid-epoch stats
stats = get_training_stats(trainer)
for k, v in log_output.items():
if k in ['loss', 'nll_loss', 'ntokens', 'nsentences', 'sample_size']:
continue # these are already logged above
if 'loss' in k or k == 'accuracy':
extra_meters[k].update(v, log_output['sample_size'])
else:
extra_meters[k].update(v)
stats[k] = extra_meters[k].avg
progress.log(stats, tag='train', step=stats['num_updates'])
# ignore the first mini-batch in words-per-second and updates-per-second calculation
if i == 0:
trainer.get_meter('wps').reset()
trainer.get_meter('ups').reset()
num_updates = trainer.get_num_updates()
if (
not args.disable_validation
and args.save_interval_updates > 0
and num_updates % args.save_interval_updates == 0
and num_updates > 0
):
valid_losses = validate(args, trainer, task, epoch_itr, valid_subsets)
checkpoint_utils.save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
if num_updates >= max_update:
break
# log end-of-epoch stats
stats = get_training_stats(trainer)
for k, meter in extra_meters.items():
stats[k] = meter.avg
progress.print(stats, tag='train', step=stats['num_updates'])
# reset training meters
for k in [
'train_loss', 'train_nll_loss', 'wps', 'ups', 'wpb', 'bsz', 'gnorm', 'clip',
]:
meter = trainer.get_meter(k)
if meter is not None:
meter.reset()
def get_training_stats(trainer):
stats = collections.OrderedDict()
stats['loss'] = trainer.get_meter('train_loss')
if trainer.get_meter('train_nll_loss').count > 0:
nll_loss = trainer.get_meter('train_nll_loss')
stats['nll_loss'] = nll_loss
else:
nll_loss = trainer.get_meter('train_loss')
stats['ppl'] = utils.get_perplexity(nll_loss.avg)
stats['wps'] = trainer.get_meter('wps')
stats['ups'] = trainer.get_meter('ups')
stats['wpb'] = trainer.get_meter('wpb')
stats['bsz'] = trainer.get_meter('bsz')
stats['num_updates'] = trainer.get_num_updates()
stats['lr'] = trainer.get_lr()
stats['gnorm'] = trainer.get_meter('gnorm')
stats['clip'] = trainer.get_meter('clip')
stats['oom'] = trainer.get_meter('oom')
if trainer.get_meter('loss_scale') is not None:
stats['loss_scale'] = trainer.get_meter('loss_scale')
stats['wall'] = round(trainer.get_meter('wall').elapsed_time)
stats['train_wall'] = trainer.get_meter('train_wall')
return stats
def validate(args, trainer, task, epoch_itr, subsets):
"""Evaluate the model on the validation set(s) and return the losses."""
if args.fixed_validation_seed is not None:
# set fixed seed for every validation
utils.set_torch_seed(args.fixed_validation_seed)
valid_losses = []
for subset in subsets:
# Initialize data iterator
itr = task.get_batch_iterator(
dataset=task.dataset(subset),
max_tokens=args.max_tokens_valid,
max_sentences=args.max_sentences_valid,
max_positions=utils.resolve_max_positions(
task.max_positions(),
trainer.get_model().max_positions(),
),
ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
required_batch_size_multiple=args.required_batch_size_multiple,
seed=args.seed,
num_shards=args.distributed_world_size,
shard_id=args.distributed_rank,
num_workers=args.num_workers,
).next_epoch_itr(shuffle=False)
progress = progress_bar.build_progress_bar(
args, itr, epoch_itr.epoch,
prefix='valid on \'{}\' subset'.format(subset),
no_progress_bar='simple'
)
# reset validation loss meters
for k in ['valid_loss', 'valid_nll_loss']:
meter = trainer.get_meter(k)
if meter is not None:
meter.reset()
extra_meters = collections.defaultdict(lambda: AverageMeter())
for sample in progress:
log_output = trainer.valid_step(sample)
for k, v in log_output.items():
if k in ['loss', 'nll_loss', 'ntokens', 'nsentences', 'sample_size']:
continue
extra_meters[k].update(v)
# log validation stats
stats = get_valid_stats(trainer, args, extra_meters)
for k, meter in extra_meters.items():
stats[k] = meter.avg
progress.print(stats, tag=subset, step=trainer.get_num_updates())
valid_losses.append(
stats[args.best_checkpoint_metric].avg
if args.best_checkpoint_metric == 'loss'
else stats[args.best_checkpoint_metric]
)
return valid_losses
def get_valid_stats(trainer, args, extra_meters=None):
stats = collections.OrderedDict()
stats['loss'] = trainer.get_meter('valid_loss')
if trainer.get_meter('valid_nll_loss').count > 0:
nll_loss = trainer.get_meter('valid_nll_loss')
stats['nll_loss'] = nll_loss
else:
nll_loss = stats['loss']
stats['ppl'] = utils.get_perplexity(nll_loss.avg)
stats['num_updates'] = trainer.get_num_updates()
if hasattr(checkpoint_utils.save_checkpoint, 'best'):
key = 'best_{0}'.format(args.best_checkpoint_metric)
best_function = max if args.maximize_best_checkpoint_metric else min
current_metric = None
if args.best_checkpoint_metric == 'loss':
current_metric = stats['loss'].avg
elif args.best_checkpoint_metric in extra_meters:
current_metric = extra_meters[args.best_checkpoint_metric].avg
elif args.best_checkpoint_metric in stats:
current_metric = stats[args.best_checkpoint_metric]
else:
raise ValueError("best_checkpoint_metric not found in logs")
stats[key] = best_function(
checkpoint_utils.save_checkpoint.best,
current_metric,
)
return stats
def distributed_main(i, args, start_rank=0):
args.device_id = i
if args.distributed_rank is None: # torch.multiprocessing.spawn
args.distributed_rank = start_rank + i
main(args, init_distributed=True)
def cli_main():
parser = options.get_training_parser()
args = options.parse_args_and_arch(parser)
if args.distributed_init_method is None:
distributed_utils.infer_init_method(args)
if args.distributed_init_method is not None:
# distributed training
if torch.cuda.device_count() > 1 and not args.distributed_no_spawn:
start_rank = args.distributed_rank
args.distributed_rank = None # assign automatically
torch.multiprocessing.spawn(
fn=distributed_main,
args=(args, start_rank),
nprocs=torch.cuda.device_count(),
)
else:
distributed_main(args.device_id, args)
elif args.distributed_world_size > 1:
# fallback for single node with multiple GPUs
assert args.distributed_world_size <= torch.cuda.device_count()
port = random.randint(10000, 20000)
args.distributed_init_method = 'tcp://localhost:{port}'.format(port=port)
args.distributed_rank = None # set based on device id
if max(args.update_freq) > 1 and args.ddp_backend != 'no_c10d':
print('| NOTE: you may get better performance with: --ddp-backend=no_c10d')
torch.multiprocessing.spawn(
fn=distributed_main,
args=(args, ),
nprocs=args.distributed_world_size,
)
else:
# single GPU training
main(args)
if __name__ == '__main__':
cli_main()