-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrack.py
374 lines (297 loc) · 14.3 KB
/
track.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import argparse
import os
import sys
import os.path as osp
import cv2
import numpy as np
import torch
sys.path.append('.')
from loguru import logger
from yolox.data.data_augment import preproc
from yolox.exp import get_exp
from yolox.utils import fuse_model, get_model_info, postprocess
from yolox.utils.visualize import plot_tracking
from tracker.tracking_utils.timer import Timer
from tracker.bot_sort import BoTSORT
IMAGE_EXT = [".jpg", ".jpeg", ".webp", ".bmp", ".png"]
# Global
trackerTimer = Timer()
timer = Timer()
def make_parser():
parser = argparse.ArgumentParser("BoT-SORT Tracks For Evaluation!")
parser.add_argument("path", help="path to dataset under evaluation, currently only support MOT17 and MOT20.")
# 没有-表示必选参数
parser.add_argument("--benchmark", dest="benchmark", type=str, default='MOT20', help="benchmark to evaluate: MOT17 | MOT20")
parser.add_argument("--eval", dest="split_to_eval", type=str, default='train', help="split to evaluate: train | val | test")
parser.add_argument("-f", "--exp_file", default=None, type=str, help="pls input your expriment description file")
parser.add_argument("-c", "--ckpt", default=None, type=str, help="ckpt for eval")
parser.add_argument("-expn", "--experiment-name", type=str, default=None)
parser.add_argument("--default-parameters", dest="default_parameters", default=False, action="store_true", help="use the default parameters as in the paper")
parser.add_argument("--save-frames", dest="save_frames", default=True, action="store_true", help="save sequences with tracks.")
# Detector
parser.add_argument("--device", default="gpu", type=str, help="device to run our model, can either be cpu or gpu")
parser.add_argument("--conf", default=None, type=float, help="test conf")
parser.add_argument("--nms", default=None, type=float, help="test nms threshold")
parser.add_argument("--tsize", default=None, type=int, help="test img size")
parser.add_argument("--fp16", dest="fp16", default=False, action="store_true", help="Adopting mix precision evaluating.")
parser.add_argument("--fuse", dest="fuse", default=False, action="store_true", help="Fuse conv and bn for testing.")
# tracking args
parser.add_argument("--track_high_thresh", type=float, default=0.6, help="tracking confidence threshold")
parser.add_argument("--track_low_thresh", default=0.1, type=float, help="lowest detection threshold valid for tracks")
parser.add_argument("--new_track_thresh", default=0.7, type=float, help="new track thresh")
parser.add_argument("--track_buffer", type=int, default=30, help="the frames for keep lost tracks")
parser.add_argument("--match_thresh", type=float, default=0.8, help="matching threshold for tracking")
parser.add_argument("--aspect_ratio_thresh", type=float, default=1.6, help="threshold for filtering out boxes of which aspect ratio are above the given value.")
parser.add_argument('--min_box_area', type=float, default=10, help='filter out tiny boxes')
# CMC
parser.add_argument("--cmc-method", default="file", type=str, help="cmc method: files (Vidstab GMC) | sparseOptFlow | orb | ecc | none")
# ReID
parser.add_argument("--with-reid", dest="with_reid", default=False, action="store_true", help="use Re-ID flag.")
parser.add_argument("--fast-reid-config", dest="fast_reid_config", default=r"../fast_reid/configs/MOT20/sbs_S50.yml", type=str, help="reid config file path")
parser.add_argument("--fast-reid-weights", dest="fast_reid_weights", default=r"../pretrained/mot20_sbs_S50.pth", type=str, help="reid config file path")
parser.add_argument('--proximity_thresh', type=float, default=0.5, help='threshold for rejecting low overlap reid matches')
parser.add_argument('--appearance_thresh', type=float, default=0.25, help='threshold for rejecting low appearance similarity reid matches')
return parser
def get_image_list(path):
image_names = []
for maindir, subdir, file_name_list in os.walk(path):
for filename in file_name_list:
apath = osp.join(maindir, filename)
ext = osp.splitext(apath)[1]
if ext in IMAGE_EXT:
image_names.append(apath)
return image_names
def write_results(filename, results):
save_format = '{frame},{id},{x1},{y1},{w},{h},{s},-1,-1,-1\n'
with open(filename, 'w') as f:
for frame_id, tlwhs, track_ids, scores in results:
for tlwh, track_id, score in zip(tlwhs, track_ids, scores):
if track_id < 0:
continue
x1, y1, w, h = tlwh
line = save_format.format(frame=frame_id, id=track_id, x1=round(x1, 1), y1=round(y1, 1), w=round(w, 1),
h=round(h, 1), s=round(score, 2))
f.write(line)
logger.info('save results to {}'.format(filename))
class Predictor(object):
def __init__(
self,
model,
exp,
device=torch.device("cpu"),
fp16=False
):
self.model = model
self.num_classes = exp.num_classes # 1
self.confthre = exp.test_conf # 0.09
self.nmsthre = exp.nmsthre # 0.7
self.test_size = exp.test_size
self.device = device
self.fp16 = fp16
# ImageNet均值和方差
self.rgb_means = (0.485, 0.456, 0.406)
self.std = (0.229, 0.224, 0.225)
def inference(self, img, timer):
img_info = {"id": 0}
if isinstance(img, str):
img_info["file_name"] = osp.basename(img) # '000003.jpg'
img = cv2.imread(img)
else:
img_info["file_name"] = None
if img is None:
raise ValueError("Empty image: ", img_info["file_name"])
height, width = img.shape[:2]
img_info["height"] = height
img_info["width"] = width
img_info["raw_img"] = img
img, ratio = preproc(img, self.test_size, self.rgb_means, self.std) # img:(1080,1920,3)--(3,896,1600)
# imagenet 数据集均值和方差 mean = [0.485,0.456,0.406]
img_info["ratio"] = ratio
img = torch.from_numpy(img).unsqueeze(0).float().to(self.device)
if self.fp16:
img = img.half() # to FP16
with torch.no_grad():
timer.tic()
outputs = self.model(img) # (1,29400,6)
outputs = postprocess(outputs, self.num_classes, self.confthre, self.nmsthre) # (40,7),self.confthre = 0.09
return outputs, img_info
def image_track(predictor, vis_folder, args):
if osp.isdir(args.path):
files = get_image_list(args.path)
else:
files = [args.path]
files.sort() # 对文件进行排序
if args.ablation:
files = files[len(files) // 2 + 1:]
num_frames = len(files)
# Tracker
tracker = BoTSORT(args, frame_rate=args.fps)
results = []
for frame_id, img_path in enumerate(files, 1):
# Detect objects
outputs, img_info = predictor.inference(img_path, timer)
scale = min(exp.test_size[0] / float(img_info['height'], ), exp.test_size[1] / float(img_info['width']))
if outputs[0] is not None:
outputs = outputs[0].cpu().numpy()
detections = outputs[:, :7]
detections[:, :4] /= scale
trackerTimer.tic()
online_targets = tracker.update(detections, img_info["raw_img"])
trackerTimer.toc()
online_tlwhs = []
online_ids = []
online_scores = []
for t in online_targets:
tlwh = t.tlwh
tid = t.track_id
vertical = tlwh[2] / tlwh[3] > args.aspect_ratio_thresh
if tlwh[2] * tlwh[3] > args.min_box_area and not vertical:
online_tlwhs.append(tlwh)
online_ids.append(tid)
online_scores.append(t.score)
# save results
results.append(
f"{frame_id},{tid},{tlwh[0]:.2f},{tlwh[1]:.2f},{tlwh[2]:.2f},{tlwh[3]:.2f},{t.score:.2f},-1,-1,-1\n"
)
timer.toc()
online_im = plot_tracking(
img_info['raw_img'], online_tlwhs, online_ids, frame_id=frame_id, fps=1. / timer.average_time
)
else:
timer.toc()
online_im = img_info['raw_img']
if args.save_frames:
save_folder = osp.join(vis_folder, args.name)
os.makedirs(save_folder, exist_ok=True)
cv2.imwrite(osp.join(save_folder, osp.basename(img_path)), online_im)
if frame_id % 200 == 0:
logger.info('Processing frame {}/{} ({:.2f} fps)'.format(frame_id, num_frames, 1. / max(1e-5, timer.average_time)))
res_file = osp.join(vis_folder, args.name + ".txt")
with open(res_file, 'w') as f:
f.writelines(results)
logger.info(f"save results to {res_file}")
def main(exp, args):
if not args.experiment_name:
args.experiment_name = exp.exp_name
output_dir = osp.join(exp.output_dir, args.experiment_name) # './YOLOX_outputs/yolox_x_mix_mot20_ch'
os.makedirs(output_dir, exist_ok=True)
vis_folder = osp.join(output_dir, "track_results") # './YOLOX_outputs/yolox_x_mix_mot20_ch/track_results'
os.makedirs(vis_folder, exist_ok=True)
args.device = torch.device("cuda" if args.device == "gpu" else "cpu")
logger.info("Args: {}".format(args))
if args.conf is not None:
exp.test_conf = args.conf
if args.nms is not None:
exp.nmsthre = args.nms
if args.tsize is not None:
exp.test_size = (args.tsize, args.tsize)
model = exp.get_model().to(args.device)
logger.info("Model Summary: {}".format(get_model_info(model, exp.test_size)))
model.eval()
if args.ckpt is None:
ckpt_file = osp.join(output_dir, "best_ckpt.pth.tar")
else:
ckpt_file = args.ckpt
logger.info("loading checkpoint")
ckpt = torch.load(ckpt_file, map_location="cpu")
# load the model state dict
model.load_state_dict(ckpt["model"])
logger.info("loaded checkpoint done.")
if args.fuse:
logger.info("\tFusing model...")
model = fuse_model(model)
if args.fp16:
model = model.half() # to FP16
predictor = Predictor(model, exp, args.device, args.fp16)
image_track(predictor, vis_folder, args)
if __name__ == "__main__":
args = make_parser().parse_args()
data_path = args.path # '/home/allenyljiang/Documents/Dataset/MOT20'
fp16 = args.fp16 # True
device = args.device # gpu
if args.benchmark == 'MOT20':
train_seqs = [5]
# train_seqs = [1, 2, 3, 5]
test_seqs = [4, 6, 7, 8]
seqs_ext = ['']
MOT = 20
elif args.benchmark == 'MOT17':
train_seqs = [2, 4, 5, 9, 10, 11, 13]
test_seqs = [1, 3, 6, 7, 8, 12, 14]
seqs_ext = ['FRCNN', 'DPM', 'SDP']
MOT = 17
else:
raise ValueError("Error: Unsupported benchmark:" + args.benchmark)
ablation = False
if args.split_to_eval == 'train':
seqs = train_seqs
elif args.split_to_eval == 'val':
seqs = train_seqs
ablation = True
elif args.split_to_eval == 'test':
seqs = test_seqs
else:
raise ValueError("Error: Unsupported split to evaluate:" + args.split_to_eval)
mainTimer = Timer()
mainTimer.tic()
for ext in seqs_ext:
for i in seqs:
if i < 10:
seq = 'MOT' + str(MOT) + '-0' + str(i)
else:
seq = 'MOT' + str(MOT) + '-' + str(i)
if ext != '':
seq += '-' + ext
args.name = seq
args.ablation = ablation
args.mot20 = MOT == 20 # 在MOT20上则为True
args.fps = 30
args.device = device
args.fp16 = fp16
args.batch_size = 1
args.trt = False
split = 'train' if i in train_seqs else 'test'
# 图像所在路径
args.path = data_path + '/' + split + '/' + seq + '/' + 'img1' # '/home/allenyljiang/Documents/Dataset/MOT20/train/MOT20-01/img1'
if args.default_parameters:
if MOT == 20: # MOT20
args.exp_file = r'../yolox/exps/example/mot/yolox_x_mix_mot20_ch.py'
args.ckpt = r'../pretrained/bytetrack_x_mot20.tar'
args.match_thresh = 0.7
else: # MOT17
if ablation:
args.exp_file = r'../yolox/exps/example/mot/yolox_x_ablation.py'
args.ckpt = r'../pretrained/bytetrack_ablation.pth.tar'
else:
args.exp_file = r'../yolox/exps/example/mot/yolox_x_mix_det.py'
args.ckpt = r'../pretrained/bytetrack_x_mot17.pth.tar'
exp = get_exp(args.exp_file, args.name)
args.track_high_thresh = 0.6
args.track_low_thresh = 0.1
args.track_buffer = 30
if seq == 'MOT17-05-FRCNN' or seq == 'MOT17-06-FRCNN':
args.track_buffer = 14
elif seq == 'MOT17-13-FRCNN' or seq == 'MOT17-14-FRCNN':
args.track_buffer = 25
else:
args.track_buffer = 30
if seq == 'MOT17-01-FRCNN':
args.track_high_thresh = 0.65
elif seq == 'MOT17-06-FRCNN':
args.track_high_thresh = 0.65
elif seq == 'MOT17-12-FRCNN':
args.track_high_thresh = 0.7
elif seq == 'MOT17-14-FRCNN':
args.track_high_thresh = 0.67
elif seq in ['MOT20-06', 'MOT20-08']: # 对MOT20-06以及MOT20-08的高置信度进行单独调整
args.track_high_thresh = 0.3
exp.test_size = (736, 1920)
args.new_track_thresh = args.track_high_thresh + 0.1 # 0.7
else:
exp = get_exp(args.exp_file, args.name)
exp.test_conf = max(0.001, args.track_low_thresh - 0.01) # 0.09
main(exp, args)
mainTimer.toc()
print("TOTAL TIME END-to-END (with loading networks and images): ", mainTimer.total_time)
print("TOTAL TIME (Detector + Tracker): " + str(timer.total_time) + ", FPS: " + str(1.0 /timer.average_time))
print("TOTAL TIME (Tracker only): " + str(trackerTimer.total_time) + ", FPS: " + str(1.0 / trackerTimer.average_time))