-
Notifications
You must be signed in to change notification settings - Fork 377
/
Copy pathonchaintx.rs
1453 lines (1350 loc) · 59 KB
/
onchaintx.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// This file is Copyright its original authors, visible in version control
// history.
//
// This file is licensed under the Apache License, Version 2.0 <LICENSE-APACHE
// or http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your option.
// You may not use this file except in accordance with one or both of these
// licenses.
//! The logic to build claims and bump in-flight transactions until confirmations.
//!
//! OnchainTxHandler objects are fully-part of ChannelMonitor and encapsulates all
//! building, tracking, bumping and notifications functions.
use bitcoin::amount::Amount;
use bitcoin::locktime::absolute::LockTime;
use bitcoin::transaction::Transaction;
use bitcoin::transaction::OutPoint as BitcoinOutPoint;
use bitcoin::script::{Script, ScriptBuf};
use bitcoin::hashes::{Hash, HashEngine};
use bitcoin::hashes::sha256::Hash as Sha256;
use bitcoin::hash_types::{Txid, BlockHash};
use bitcoin::secp256k1::PublicKey;
use bitcoin::secp256k1::{Secp256k1, ecdsa::Signature};
use bitcoin::secp256k1;
use crate::chain::chaininterface::{ConfirmationTarget, compute_feerate_sat_per_1000_weight};
use crate::sign::{ChannelDerivationParameters, HTLCDescriptor, ChannelSigner, EntropySource, SignerProvider, ecdsa::EcdsaChannelSigner};
use crate::ln::msgs::DecodeError;
use crate::types::payment::PaymentPreimage;
use crate::ln::chan_utils::{self, ChannelTransactionParameters, HTLCOutputInCommitment, HolderCommitmentTransaction};
use crate::chain::ClaimId;
use crate::chain::chaininterface::{FeeEstimator, BroadcasterInterface, LowerBoundedFeeEstimator};
use crate::chain::channelmonitor::ANTI_REORG_DELAY;
use crate::chain::package::{PackageSolvingData, PackageTemplate};
use crate::chain::transaction::MaybeSignedTransaction;
use crate::util::logger::Logger;
use crate::util::ser::{Readable, ReadableArgs, MaybeReadable, UpgradableRequired, Writer, Writeable};
use crate::io;
use crate::prelude::*;
use alloc::collections::BTreeMap;
use core::cmp;
use core::ops::Deref;
use core::mem::replace;
use core::mem::swap;
use crate::types::features::ChannelTypeFeatures;
const MAX_ALLOC_SIZE: usize = 64*1024;
/// An entry for an [`OnchainEvent`], stating the block height when the event was observed and the
/// transaction causing it.
///
/// Used to determine when the on-chain event can be considered safe from a chain reorganization.
#[derive(Clone, PartialEq, Eq)]
struct OnchainEventEntry {
txid: Txid,
height: u32,
block_hash: Option<BlockHash>, // Added as optional, will be filled in for any entry generated on 0.0.113 or after
event: OnchainEvent,
}
impl OnchainEventEntry {
fn confirmation_threshold(&self) -> u32 {
self.height + ANTI_REORG_DELAY - 1
}
fn has_reached_confirmation_threshold(&self, height: u32) -> bool {
height >= self.confirmation_threshold()
}
}
/// Events for claims the [`OnchainTxHandler`] has generated. Once the events are considered safe
/// from a chain reorg, the [`OnchainTxHandler`] will act accordingly.
#[derive(Clone, PartialEq, Eq)]
enum OnchainEvent {
/// A pending request has been claimed by a transaction spending the exact same set of outpoints
/// as the request. This claim can either be ours or from the counterparty. Once the claiming
/// transaction has met [`ANTI_REORG_DELAY`] confirmations, we consider it final and remove the
/// pending request.
Claim {
claim_id: ClaimId,
},
/// The counterparty has claimed an outpoint from one of our pending requests through a
/// different transaction than ours. If our transaction was attempting to claim multiple
/// outputs, we need to drop the outpoint claimed by the counterparty and regenerate a new claim
/// transaction for ourselves. We keep tracking, separately, the outpoint claimed by the
/// counterparty up to [`ANTI_REORG_DELAY`] confirmations to ensure we attempt to re-claim it
/// if the counterparty's claim is reorged from the chain.
ContentiousOutpoint {
package: PackageTemplate,
}
}
impl Writeable for OnchainEventEntry {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
write_tlv_fields!(writer, {
(0, self.txid, required),
(1, self.block_hash, option),
(2, self.height, required),
(4, self.event, required),
});
Ok(())
}
}
impl MaybeReadable for OnchainEventEntry {
fn read<R: io::Read>(reader: &mut R) -> Result<Option<Self>, DecodeError> {
let mut txid = Txid::all_zeros();
let mut height = 0;
let mut block_hash = None;
let mut event = UpgradableRequired(None);
read_tlv_fields!(reader, {
(0, txid, required),
(1, block_hash, option),
(2, height, required),
(4, event, upgradable_required),
});
Ok(Some(Self { txid, height, block_hash, event: _init_tlv_based_struct_field!(event, upgradable_required) }))
}
}
impl_writeable_tlv_based_enum_upgradable!(OnchainEvent,
(0, Claim) => {
(0, claim_id, required),
},
(1, ContentiousOutpoint) => {
(0, package, required),
},
);
impl Readable for Option<Vec<Option<(usize, Signature)>>> {
fn read<R: io::Read>(reader: &mut R) -> Result<Self, DecodeError> {
match Readable::read(reader)? {
0u8 => Ok(None),
1u8 => {
let vlen: u64 = Readable::read(reader)?;
let mut ret = Vec::with_capacity(cmp::min(vlen as usize, MAX_ALLOC_SIZE / ::core::mem::size_of::<Option<(usize, Signature)>>()));
for _ in 0..vlen {
ret.push(match Readable::read(reader)? {
0u8 => None,
1u8 => Some((<u64 as Readable>::read(reader)? as usize, Readable::read(reader)?)),
_ => return Err(DecodeError::InvalidValue)
});
}
Ok(Some(ret))
},
_ => Err(DecodeError::InvalidValue),
}
}
}
impl Writeable for Option<Vec<Option<(usize, Signature)>>> {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
match self {
&Some(ref vec) => {
1u8.write(writer)?;
(vec.len() as u64).write(writer)?;
for opt in vec.iter() {
match opt {
&Some((ref idx, ref sig)) => {
1u8.write(writer)?;
(*idx as u64).write(writer)?;
sig.write(writer)?;
},
&None => 0u8.write(writer)?,
}
}
},
&None => 0u8.write(writer)?,
}
Ok(())
}
}
/// The claim commonly referred to as the pre-signed second-stage HTLC transaction.
#[derive(Clone, PartialEq, Eq)]
pub(crate) struct ExternalHTLCClaim {
pub(crate) commitment_txid: Txid,
pub(crate) per_commitment_number: u64,
pub(crate) htlc: HTLCOutputInCommitment,
pub(crate) preimage: Option<PaymentPreimage>,
pub(crate) counterparty_sig: Signature,
pub(crate) per_commitment_point: PublicKey,
}
// Represents the different types of claims for which events are yielded externally to satisfy said
// claims.
#[derive(Clone, PartialEq, Eq)]
pub(crate) enum ClaimEvent {
/// Event yielded to signal that the commitment transaction fee must be bumped to claim any
/// encumbered funds and proceed to HTLC resolution, if any HTLCs exist.
BumpCommitment {
package_target_feerate_sat_per_1000_weight: u32,
commitment_tx: Transaction,
anchor_output_idx: u32,
},
/// Event yielded to signal that the commitment transaction has confirmed and its HTLCs must be
/// resolved by broadcasting a transaction with sufficient fee to claim them.
BumpHTLC {
target_feerate_sat_per_1000_weight: u32,
htlcs: Vec<ExternalHTLCClaim>,
tx_lock_time: LockTime,
},
}
/// Represents the different ways an output can be claimed (i.e., spent to an address under our
/// control) onchain.
pub(crate) enum OnchainClaim {
/// A finalized transaction pending confirmation spending the output to claim.
Tx(MaybeSignedTransaction),
/// An event yielded externally to signal additional inputs must be added to a transaction
/// pending confirmation spending the output to claim.
Event(ClaimEvent),
}
/// Represents the different feerate strategies a pending request can use when generating a claim.
pub(crate) enum FeerateStrategy {
/// We must reuse the most recently used feerate, if any.
RetryPrevious,
/// We must pick the highest between the most recently used and the current feerate estimate.
HighestOfPreviousOrNew,
/// We must force a bump of the most recently used feerate, either by using the current feerate
/// estimate if it's higher, or manually bumping.
ForceBump,
}
/// OnchainTxHandler receives claiming requests, aggregates them if it's sound, broadcast and
/// do RBF bumping if possible.
#[derive(Clone)]
pub struct OnchainTxHandler<ChannelSigner: EcdsaChannelSigner> {
channel_value_satoshis: u64,
channel_keys_id: [u8; 32],
destination_script: ScriptBuf,
holder_commitment: HolderCommitmentTransaction,
prev_holder_commitment: Option<HolderCommitmentTransaction>,
pub(super) signer: ChannelSigner,
pub(crate) channel_transaction_parameters: ChannelTransactionParameters,
// Used to track claiming requests. If claim tx doesn't confirm before height timer expiration we need to bump
// it (RBF or CPFP). If an input has been part of an aggregate tx at first claim try, we need to keep it within
// another bumped aggregate tx to comply with RBF rules. We may have multiple claiming txn in the flight for the
// same set of outpoints. One of the outpoints may be spent by a transaction not issued by us. That's why at
// block connection we scan all inputs and if any of them is among a set of a claiming request we test for set
// equality between spending transaction and claim request. If true, it means transaction was one our claiming one
// after a security delay of 6 blocks we remove pending claim request. If false, it means transaction wasn't and
// we need to regenerate new claim request with reduced set of still-claimable outpoints.
// Key is identifier of the pending claim request, i.e the txid of the initial claiming transaction generated by
// us and is immutable until all outpoint of the claimable set are post-anti-reorg-delay solved.
// Entry is cache of elements need to generate a bumped claiming transaction (see ClaimTxBumpMaterial)
#[cfg(test)] // Used in functional_test to verify sanitization
pub(crate) pending_claim_requests: HashMap<ClaimId, PackageTemplate>,
#[cfg(not(test))]
pending_claim_requests: HashMap<ClaimId, PackageTemplate>,
// Used to track external events that need to be forwarded to the `ChainMonitor`. This `Vec`
// essentially acts as an insertion-ordered `HashMap` – there should only ever be one occurrence
// of a `ClaimId`, which tracks its latest `ClaimEvent`, i.e., if a pending claim exists, and
// a new block has been connected, resulting in a new claim, the previous will be replaced with
// the new.
//
// These external events may be generated in the following cases:
// - A channel has been force closed by broadcasting the holder's latest commitment transaction
// - A block being connected/disconnected
// - Learning the preimage for an HTLC we can claim onchain
pending_claim_events: Vec<(ClaimId, ClaimEvent)>,
// Used to link outpoints claimed in a connected block to a pending claim request. The keys
// represent the outpoints that our `ChannelMonitor` has detected we have keys/scripts to
// claim. The values track the pending claim request identifier and the initial confirmation
// block height, and are immutable until the outpoint has enough confirmations to meet our
// [`ANTI_REORG_DELAY`]. The initial confirmation block height is used to remove the entry if
// the block gets disconnected.
#[cfg(test)] // Used in functional_test to verify sanitization
pub claimable_outpoints: HashMap<BitcoinOutPoint, (ClaimId, u32)>,
#[cfg(not(test))]
claimable_outpoints: HashMap<BitcoinOutPoint, (ClaimId, u32)>,
locktimed_packages: BTreeMap<u32, Vec<PackageTemplate>>,
onchain_events_awaiting_threshold_conf: Vec<OnchainEventEntry>,
pub(super) secp_ctx: Secp256k1<secp256k1::All>,
}
impl<ChannelSigner: EcdsaChannelSigner> PartialEq for OnchainTxHandler<ChannelSigner> {
fn eq(&self, other: &Self) -> bool {
// `signer`, `secp_ctx`, and `pending_claim_events` are excluded on purpose.
self.channel_value_satoshis == other.channel_value_satoshis &&
self.channel_keys_id == other.channel_keys_id &&
self.destination_script == other.destination_script &&
self.holder_commitment == other.holder_commitment &&
self.prev_holder_commitment == other.prev_holder_commitment &&
self.channel_transaction_parameters == other.channel_transaction_parameters &&
self.pending_claim_requests == other.pending_claim_requests &&
self.claimable_outpoints == other.claimable_outpoints &&
self.locktimed_packages == other.locktimed_packages &&
self.onchain_events_awaiting_threshold_conf == other.onchain_events_awaiting_threshold_conf
}
}
const SERIALIZATION_VERSION: u8 = 1;
const MIN_SERIALIZATION_VERSION: u8 = 1;
impl<ChannelSigner: EcdsaChannelSigner> OnchainTxHandler<ChannelSigner> {
pub(crate) fn write<W: Writer>(&self, writer: &mut W) -> Result<(), io::Error> {
write_ver_prefix!(writer, SERIALIZATION_VERSION, MIN_SERIALIZATION_VERSION);
self.destination_script.write(writer)?;
self.holder_commitment.write(writer)?;
None::<Option<Vec<Option<(usize, Signature)>>>>.write(writer)?; // holder_htlc_sigs
self.prev_holder_commitment.write(writer)?;
None::<Option<Vec<Option<(usize, Signature)>>>>.write(writer)?; // prev_holder_htlc_sigs
self.channel_transaction_parameters.write(writer)?;
// Write a zero-length signer. The data is no longer deserialized as of version 0.0.113 and
// downgrades before version 0.0.113 are no longer supported as of version 0.0.119.
0u32.write(writer)?;
writer.write_all(&(self.pending_claim_requests.len() as u64).to_be_bytes())?;
for (ref ancestor_claim_txid, request) in self.pending_claim_requests.iter() {
ancestor_claim_txid.write(writer)?;
request.write(writer)?;
}
writer.write_all(&(self.claimable_outpoints.len() as u64).to_be_bytes())?;
for (ref outp, ref claim_and_height) in self.claimable_outpoints.iter() {
outp.write(writer)?;
claim_and_height.0.write(writer)?;
claim_and_height.1.write(writer)?;
}
writer.write_all(&(self.locktimed_packages.len() as u64).to_be_bytes())?;
for (ref locktime, ref packages) in self.locktimed_packages.iter() {
locktime.write(writer)?;
writer.write_all(&(packages.len() as u64).to_be_bytes())?;
for ref package in packages.iter() {
package.write(writer)?;
}
}
writer.write_all(&(self.onchain_events_awaiting_threshold_conf.len() as u64).to_be_bytes())?;
for ref entry in self.onchain_events_awaiting_threshold_conf.iter() {
entry.write(writer)?;
}
write_tlv_fields!(writer, {});
Ok(())
}
}
impl<'a, 'b, ES: EntropySource, SP: SignerProvider> ReadableArgs<(&'a ES, &'b SP, u64, [u8; 32])> for OnchainTxHandler<SP::EcdsaSigner> {
fn read<R: io::Read>(reader: &mut R, args: (&'a ES, &'b SP, u64, [u8; 32])) -> Result<Self, DecodeError> {
let entropy_source = args.0;
let signer_provider = args.1;
let channel_value_satoshis = args.2;
let channel_keys_id = args.3;
let _ver = read_ver_prefix!(reader, SERIALIZATION_VERSION);
let destination_script = Readable::read(reader)?;
let holder_commitment = Readable::read(reader)?;
let _holder_htlc_sigs: Option<Vec<Option<(usize, Signature)>>> = Readable::read(reader)?;
let prev_holder_commitment = Readable::read(reader)?;
let _prev_holder_htlc_sigs: Option<Vec<Option<(usize, Signature)>>> = Readable::read(reader)?;
let channel_parameters = Readable::read(reader)?;
// Read the serialized signer bytes, but don't deserialize them, as we'll obtain our signer
// by re-deriving the private key material.
let keys_len: u32 = Readable::read(reader)?;
let mut bytes_read = 0;
while bytes_read != keys_len as usize {
// Read 1KB at a time to avoid accidentally allocating 4GB on corrupted channel keys
let mut data = [0; 1024];
let bytes_to_read = cmp::min(1024, keys_len as usize - bytes_read);
let read_slice = &mut data[0..bytes_to_read];
reader.read_exact(read_slice)?;
bytes_read += bytes_to_read;
}
let mut signer = signer_provider.derive_channel_signer(channel_value_satoshis, channel_keys_id);
signer.provide_channel_parameters(&channel_parameters);
let pending_claim_requests_len: u64 = Readable::read(reader)?;
let mut pending_claim_requests = hash_map_with_capacity(cmp::min(pending_claim_requests_len as usize, MAX_ALLOC_SIZE / 128));
for _ in 0..pending_claim_requests_len {
pending_claim_requests.insert(Readable::read(reader)?, Readable::read(reader)?);
}
let claimable_outpoints_len: u64 = Readable::read(reader)?;
let mut claimable_outpoints = hash_map_with_capacity(cmp::min(pending_claim_requests_len as usize, MAX_ALLOC_SIZE / 128));
for _ in 0..claimable_outpoints_len {
let outpoint = Readable::read(reader)?;
let ancestor_claim_txid = Readable::read(reader)?;
let height = Readable::read(reader)?;
claimable_outpoints.insert(outpoint, (ancestor_claim_txid, height));
}
let locktimed_packages_len: u64 = Readable::read(reader)?;
let mut locktimed_packages = BTreeMap::new();
for _ in 0..locktimed_packages_len {
let locktime = Readable::read(reader)?;
let packages_len: u64 = Readable::read(reader)?;
let mut packages = Vec::with_capacity(cmp::min(packages_len as usize, MAX_ALLOC_SIZE / core::mem::size_of::<PackageTemplate>()));
for _ in 0..packages_len {
packages.push(Readable::read(reader)?);
}
locktimed_packages.insert(locktime, packages);
}
let waiting_threshold_conf_len: u64 = Readable::read(reader)?;
let mut onchain_events_awaiting_threshold_conf = Vec::with_capacity(cmp::min(waiting_threshold_conf_len as usize, MAX_ALLOC_SIZE / 128));
for _ in 0..waiting_threshold_conf_len {
if let Some(val) = MaybeReadable::read(reader)? {
onchain_events_awaiting_threshold_conf.push(val);
}
}
read_tlv_fields!(reader, {});
let mut secp_ctx = Secp256k1::new();
secp_ctx.seeded_randomize(&entropy_source.get_secure_random_bytes());
Ok(OnchainTxHandler {
channel_value_satoshis,
channel_keys_id,
destination_script,
holder_commitment,
prev_holder_commitment,
signer,
channel_transaction_parameters: channel_parameters,
claimable_outpoints,
locktimed_packages,
pending_claim_requests,
onchain_events_awaiting_threshold_conf,
pending_claim_events: Vec::new(),
secp_ctx,
})
}
}
impl<ChannelSigner: EcdsaChannelSigner> OnchainTxHandler<ChannelSigner> {
pub(crate) fn new(
channel_value_satoshis: u64, channel_keys_id: [u8; 32], destination_script: ScriptBuf,
signer: ChannelSigner, channel_parameters: ChannelTransactionParameters,
holder_commitment: HolderCommitmentTransaction, secp_ctx: Secp256k1<secp256k1::All>
) -> Self {
OnchainTxHandler {
channel_value_satoshis,
channel_keys_id,
destination_script,
holder_commitment,
prev_holder_commitment: None,
signer,
channel_transaction_parameters: channel_parameters,
pending_claim_requests: new_hash_map(),
claimable_outpoints: new_hash_map(),
locktimed_packages: BTreeMap::new(),
onchain_events_awaiting_threshold_conf: Vec::new(),
pending_claim_events: Vec::new(),
secp_ctx,
}
}
pub(crate) fn get_prev_holder_commitment_to_self_value(&self) -> Option<u64> {
self.prev_holder_commitment.as_ref().map(|commitment| commitment.to_broadcaster_value_sat())
}
pub(crate) fn get_cur_holder_commitment_to_self_value(&self) -> u64 {
self.holder_commitment.to_broadcaster_value_sat()
}
pub(crate) fn get_and_clear_pending_claim_events(&mut self) -> Vec<(ClaimId, ClaimEvent)> {
let mut events = Vec::new();
swap(&mut events, &mut self.pending_claim_events);
events
}
/// Triggers rebroadcasts/fee-bumps of pending claims from a force-closed channel. This is
/// crucial in preventing certain classes of pinning attacks, detecting substantial mempool
/// feerate changes between blocks, and ensuring reliability if broadcasting fails. We recommend
/// invoking this every 30 seconds, or lower if running in an environment with spotty
/// connections, like on mobile.
pub(super) fn rebroadcast_pending_claims<B: Deref, F: Deref, L: Logger>(
&mut self, current_height: u32, feerate_strategy: FeerateStrategy, broadcaster: &B,
conf_target: ConfirmationTarget, fee_estimator: &LowerBoundedFeeEstimator<F>, logger: &L,
)
where
B::Target: BroadcasterInterface,
F::Target: FeeEstimator,
{
let mut bump_requests = Vec::with_capacity(self.pending_claim_requests.len());
for (claim_id, request) in self.pending_claim_requests.iter() {
let inputs = request.outpoints();
log_info!(logger, "Triggering rebroadcast/fee-bump for request with inputs {:?}", inputs);
bump_requests.push((*claim_id, request.clone()));
}
for (claim_id, request) in bump_requests {
self.generate_claim(current_height, &request, &feerate_strategy, conf_target, fee_estimator, logger)
.map(|(_, new_feerate, claim)| {
let mut feerate_was_bumped = false;
if let Some(mut_request) = self.pending_claim_requests.get_mut(&claim_id) {
feerate_was_bumped = new_feerate > request.previous_feerate();
mut_request.set_feerate(new_feerate);
}
match claim {
OnchainClaim::Tx(tx) => {
if tx.is_fully_signed() {
let log_start = if feerate_was_bumped { "Broadcasting RBF-bumped" } else { "Rebroadcasting" };
log_info!(logger, "{} onchain {}", log_start, log_tx!(tx.0));
broadcaster.broadcast_transactions(&[&tx.0]);
} else {
log_info!(logger, "Waiting for signature of unsigned onchain transaction {}", tx.0.compute_txid());
}
},
OnchainClaim::Event(event) => {
let log_start = if feerate_was_bumped { "Yielding fee-bumped" } else { "Replaying" };
log_info!(logger, "{} onchain event to spend inputs {:?}", log_start,
request.outpoints());
#[cfg(debug_assertions)] {
debug_assert!(request.requires_external_funding());
let num_existing = self.pending_claim_events.iter()
.filter(|entry| entry.0 == claim_id).count();
assert!(num_existing == 0 || num_existing == 1);
}
self.pending_claim_events.retain(|event| event.0 != claim_id);
self.pending_claim_events.push((claim_id, event));
}
}
});
}
}
/// Returns true if we are currently tracking any pending claim requests that are not fully
/// confirmed yet.
pub(super) fn has_pending_claims(&self) -> bool
{
self.pending_claim_requests.len() != 0
}
/// Lightning security model (i.e being able to redeem/timeout HTLC or penalize counterparty
/// onchain) lays on the assumption of claim transactions getting confirmed before timelock
/// expiration (CSV or CLTV following cases). In case of high-fee spikes, claim tx may get stuck
/// in the mempool, so you need to bump its feerate quickly using Replace-By-Fee or
/// Child-Pay-For-Parent.
///
/// Panics if there are signing errors, because signing operations in reaction to on-chain
/// events are not expected to fail, and if they do, we may lose funds.
fn generate_claim<F: Deref, L: Logger>(
&mut self, cur_height: u32, cached_request: &PackageTemplate, feerate_strategy: &FeerateStrategy,
conf_target: ConfirmationTarget, fee_estimator: &LowerBoundedFeeEstimator<F>, logger: &L,
) -> Option<(u32, u64, OnchainClaim)>
where F::Target: FeeEstimator,
{
let request_outpoints = cached_request.outpoints();
if request_outpoints.is_empty() {
// Don't prune pending claiming request yet, we may have to resurrect HTLCs. Untractable
// packages cannot be aggregated and will never be split, so we cannot end up with an
// empty claim.
debug_assert!(cached_request.is_malleable());
return None;
}
// If we've seen transaction inclusion in the chain for all outpoints in our request, we
// don't need to continue generating more claims. We'll keep tracking the request to fully
// remove it once it reaches the confirmation threshold, or to generate a new claim if the
// transaction is reorged out.
let mut all_inputs_have_confirmed_spend = true;
for outpoint in request_outpoints.iter() {
if let Some((request_claim_id, _)) = self.claimable_outpoints.get(*outpoint) {
// We check for outpoint spends within claims individually rather than as a set
// since requests can have outpoints split off.
if !self.onchain_events_awaiting_threshold_conf.iter()
.any(|event_entry| if let OnchainEvent::Claim { claim_id } = event_entry.event {
*request_claim_id == claim_id
} else {
// The onchain event is not a claim, keep seeking until we find one.
false
})
{
// Either we had no `OnchainEvent::Claim`, or we did but none matched the
// outpoint's registered spend.
all_inputs_have_confirmed_spend = false;
}
} else {
// The request's outpoint spend does not exist yet.
all_inputs_have_confirmed_spend = false;
}
}
if all_inputs_have_confirmed_spend {
return None;
}
// Compute new height timer to decide when we need to regenerate a new bumped version of the claim tx (if we
// didn't receive confirmation of it before, or not enough reorg-safe depth on top of it).
let new_timer = cached_request.get_height_timer(cur_height);
if cached_request.is_malleable() {
if cached_request.requires_external_funding() {
let target_feerate_sat_per_1000_weight = cached_request.compute_package_feerate(
fee_estimator, conf_target, feerate_strategy,
);
if let Some(htlcs) = cached_request.construct_malleable_package_with_external_funding(self) {
return Some((
new_timer,
target_feerate_sat_per_1000_weight as u64,
OnchainClaim::Event(ClaimEvent::BumpHTLC {
target_feerate_sat_per_1000_weight,
htlcs,
tx_lock_time: LockTime::from_consensus(cached_request.package_locktime(cur_height)),
}),
));
} else {
return None;
}
}
let predicted_weight = cached_request.package_weight(&self.destination_script);
if let Some((output_value, new_feerate)) = cached_request.compute_package_output(
predicted_weight, self.destination_script.minimal_non_dust().to_sat(),
feerate_strategy, conf_target, fee_estimator, logger,
) {
assert!(new_feerate != 0);
let transaction = cached_request.maybe_finalize_malleable_package(
cur_height, self, Amount::from_sat(output_value), self.destination_script.clone(), logger
).unwrap();
assert!(predicted_weight >= transaction.0.weight().to_wu());
return Some((new_timer, new_feerate, OnchainClaim::Tx(transaction)));
}
} else {
// Untractable packages cannot have their fees bumped through Replace-By-Fee. Some
// packages may support fee bumping through Child-Pays-For-Parent, indicated by those
// which require external funding.
let mut inputs = cached_request.inputs();
debug_assert_eq!(inputs.len(), 1);
let tx = match cached_request.maybe_finalize_untractable_package(self, logger) {
Some(tx) => tx,
None => return None,
};
if !cached_request.requires_external_funding() {
return Some((new_timer, 0, OnchainClaim::Tx(tx)));
}
return inputs.find_map(|input| match input {
// Commitment inputs with anchors support are the only untractable inputs supported
// thus far that require external funding.
PackageSolvingData::HolderFundingOutput(output) => {
debug_assert_eq!(tx.0.compute_txid(), self.holder_commitment.trust().txid(),
"Holder commitment transaction mismatch");
let package_target_feerate_sat_per_1000_weight = cached_request
.compute_package_feerate(fee_estimator, conf_target, feerate_strategy);
if let Some(input_amount_sat) = output.funding_amount {
let fee_sat = input_amount_sat - tx.0.output.iter().map(|output| output.value.to_sat()).sum::<u64>();
let commitment_tx_feerate_sat_per_1000_weight =
compute_feerate_sat_per_1000_weight(fee_sat, tx.0.weight().to_wu());
if commitment_tx_feerate_sat_per_1000_weight >= package_target_feerate_sat_per_1000_weight {
log_debug!(logger, "Pre-signed commitment {} already has feerate {} sat/kW above required {} sat/kW",
tx.0.compute_txid(), commitment_tx_feerate_sat_per_1000_weight,
package_target_feerate_sat_per_1000_weight);
return Some((new_timer, 0, OnchainClaim::Tx(tx.clone())));
}
}
// We'll locate an anchor output we can spend within the commitment transaction.
let funding_pubkey = &self.channel_transaction_parameters.holder_pubkeys.funding_pubkey;
match chan_utils::get_anchor_output(&tx.0, funding_pubkey) {
// An anchor output was found, so we should yield a funding event externally.
Some((idx, _)) => {
// TODO: Use a lower confirmation target when both our and the
// counterparty's latest commitment don't have any HTLCs present.
Some((
new_timer,
package_target_feerate_sat_per_1000_weight as u64,
OnchainClaim::Event(ClaimEvent::BumpCommitment {
package_target_feerate_sat_per_1000_weight,
commitment_tx: tx.0.clone(),
anchor_output_idx: idx,
}),
))
},
// An anchor output was not found. There's nothing we can do other than
// attempt to broadcast the transaction with its current fee rate and hope
// it confirms. This is essentially the same behavior as a commitment
// transaction without anchor outputs.
None => Some((new_timer, 0, OnchainClaim::Tx(tx.clone()))),
}
},
_ => {
debug_assert!(false, "Only HolderFundingOutput inputs should be untractable and require external funding");
None
},
})
}
None
}
pub fn abandon_claim(&mut self, outpoint: &BitcoinOutPoint) {
let claim_id = self.claimable_outpoints.get(outpoint).map(|(claim_id, _)| *claim_id)
.or_else(|| {
self.pending_claim_requests.iter()
.find(|(_, claim)| claim.outpoints().iter().any(|claim_outpoint| *claim_outpoint == outpoint))
.map(|(claim_id, _)| *claim_id)
});
if let Some(claim_id) = claim_id {
if let Some(claim) = self.pending_claim_requests.remove(&claim_id) {
for outpoint in claim.outpoints() {
self.claimable_outpoints.remove(outpoint);
}
}
} else {
self.locktimed_packages.values_mut().for_each(|claims|
claims.retain(|claim| !claim.outpoints().iter().any(|claim_outpoint| *claim_outpoint == outpoint)));
}
}
/// Upon channelmonitor.block_connected(..) or upon provision of a preimage on the forward link
/// for this channel, provide new relevant on-chain transactions and/or new claim requests.
/// Together with `update_claims_view_from_matched_txn` this used to be named
/// `block_connected`, but it is now also used for claiming an HTLC output if we receive a
/// preimage after force-close.
///
/// `conf_height` represents the height at which the request was generated. This
/// does not need to equal the current blockchain tip height, which should be provided via
/// `cur_height`, however it must never be higher than `cur_height`.
pub(super) fn update_claims_view_from_requests<B: Deref, F: Deref, L: Logger>(
&mut self, mut requests: Vec<PackageTemplate>, conf_height: u32, cur_height: u32,
broadcaster: &B, conf_target: ConfirmationTarget,
fee_estimator: &LowerBoundedFeeEstimator<F>, logger: &L
) where
B::Target: BroadcasterInterface,
F::Target: FeeEstimator,
{
if !requests.is_empty() {
log_debug!(logger, "Updating claims view at height {} with {} claim requests", cur_height, requests.len());
}
// First drop any duplicate claims.
requests.retain(|req| {
debug_assert_eq!(
req.outpoints().len(),
1,
"Claims passed to `update_claims_view_from_requests` should not be aggregated"
);
let mut all_outpoints_claiming = true;
for outpoint in req.outpoints() {
if self.claimable_outpoints.get(outpoint).is_none() {
all_outpoints_claiming = false;
}
}
if all_outpoints_claiming {
log_info!(logger, "Ignoring second claim for outpoint {}:{}, already registered its claiming request",
req.outpoints()[0].txid, req.outpoints()[0].vout);
false
} else {
let timelocked_equivalent_package = self.locktimed_packages.iter().map(|v| v.1.iter()).flatten()
.find(|locked_package| locked_package.outpoints() == req.outpoints());
if let Some(package) = timelocked_equivalent_package {
log_info!(logger, "Ignoring second claim for outpoint {}:{}, we already have one which we're waiting on a timelock at {} for.",
req.outpoints()[0].txid, req.outpoints()[0].vout, package.package_locktime(cur_height));
false
} else {
true
}
}
});
// Then try to maximally aggregate `requests`.
for i in (1..requests.len()).rev() {
for j in 0..i {
if requests[i].can_merge_with(&requests[j], cur_height) {
let merge = requests.remove(i);
if let Err(rejected) = requests[j].merge_package(merge, cur_height) {
debug_assert!(false, "Merging package should not be rejected after verifying can_merge_with.");
requests.insert(i, rejected);
} else {
break;
}
}
}
}
// Finally, split requests into timelocked ones and immediately-spendable ones.
let mut preprocessed_requests = Vec::with_capacity(requests.len());
for req in requests {
let package_locktime = req.package_locktime(cur_height);
if package_locktime > cur_height {
log_info!(logger, "Delaying claim of package until its timelock at {} (current height {}), the following outpoints are spent:", package_locktime, cur_height);
for outpoint in req.outpoints() {
log_info!(logger, " Outpoint {}", outpoint);
}
self.locktimed_packages.entry(package_locktime).or_default().push(req);
} else {
preprocessed_requests.push(req);
}
}
// Claim everything up to and including `cur_height`.
let remaining_locked_packages = self.locktimed_packages.split_off(&(cur_height + 1));
if !self.locktimed_packages.is_empty() {
log_debug!(logger,
"Updating claims view at height {} with {} locked packages available for claim",
cur_height,
self.locktimed_packages.len());
}
for (pop_height, mut entry) in self.locktimed_packages.iter_mut() {
log_trace!(logger, "Restoring delayed claim of package(s) at their timelock at {}.", pop_height);
preprocessed_requests.append(&mut entry);
}
self.locktimed_packages = remaining_locked_packages;
// Generate claim transactions and track them to bump if necessary at
// height timer expiration (i.e in how many blocks we're going to take action).
for mut req in preprocessed_requests {
if let Some((new_timer, new_feerate, claim)) = self.generate_claim(
cur_height, &req, &FeerateStrategy::ForceBump, conf_target, &*fee_estimator, &*logger,
) {
req.set_timer(new_timer);
req.set_feerate(new_feerate);
// Once a pending claim has an id assigned, it remains fixed until the claim is
// satisfied, regardless of whether the claim switches between different variants of
// `OnchainClaim`.
let claim_id = match claim {
OnchainClaim::Tx(tx) => {
if tx.is_fully_signed() {
log_info!(logger, "Broadcasting onchain {}", log_tx!(tx.0));
broadcaster.broadcast_transactions(&[&tx.0]);
} else {
log_info!(logger, "Waiting for signature of unsigned onchain transaction {}", tx.0.compute_txid());
}
ClaimId(tx.0.compute_txid().to_byte_array())
},
OnchainClaim::Event(claim_event) => {
log_info!(logger, "Yielding onchain event to spend inputs {:?}", req.outpoints());
let claim_id = match claim_event {
ClaimEvent::BumpCommitment { ref commitment_tx, .. } =>
// For commitment claims, we can just use their txid as it should
// already be unique.
ClaimId(commitment_tx.compute_txid().to_byte_array()),
ClaimEvent::BumpHTLC { ref htlcs, .. } => {
// For HTLC claims, commit to the entire set of HTLC outputs to
// claim, which will always be unique per request. Once a claim ID
// is generated, it is assigned and remains unchanged, even if the
// underlying set of HTLCs changes.
let mut engine = Sha256::engine();
for htlc in htlcs {
engine.input(&htlc.commitment_txid.to_byte_array());
engine.input(&htlc.htlc.transaction_output_index.unwrap().to_be_bytes());
}
ClaimId(Sha256::from_engine(engine).to_byte_array())
},
};
debug_assert!(self.pending_claim_requests.get(&claim_id).is_none());
debug_assert_eq!(self.pending_claim_events.iter().filter(|entry| entry.0 == claim_id).count(), 0);
self.pending_claim_events.push((claim_id, claim_event));
claim_id
},
};
// Because fuzzing can cause hash collisions, we can end up with conflicting claim
// ids here, so we only assert when not fuzzing.
debug_assert!(cfg!(fuzzing) || self.pending_claim_requests.get(&claim_id).is_none());
for k in req.outpoints() {
log_info!(logger, "Registering claiming request for {}:{}", k.txid, k.vout);
self.claimable_outpoints.insert(k.clone(), (claim_id, conf_height));
}
self.pending_claim_requests.insert(claim_id, req);
}
}
}
/// Upon channelmonitor.block_connected(..) or upon provision of a preimage on the forward link
/// for this channel, provide new relevant on-chain transactions and/or new claim requests.
/// Together with `update_claims_view_from_requests` this used to be named `block_connected`,
/// but it is now also used for claiming an HTLC output if we receive a preimage after force-close.
///
/// `conf_height` represents the height at which the transactions in `txn_matched` were
/// confirmed. This does not need to equal the current blockchain tip height, which should be
/// provided via `cur_height`, however it must never be higher than `cur_height`.
pub(super) fn update_claims_view_from_matched_txn<B: Deref, F: Deref, L: Logger>(
&mut self, txn_matched: &[&Transaction], conf_height: u32, conf_hash: BlockHash,
cur_height: u32, broadcaster: &B, conf_target: ConfirmationTarget,
fee_estimator: &LowerBoundedFeeEstimator<F>, logger: &L
) where
B::Target: BroadcasterInterface,
F::Target: FeeEstimator,
{
let mut have_logged_intro = false;
let mut maybe_log_intro = || {
if !have_logged_intro {
log_debug!(logger, "Updating claims view at height {} with {} matched transactions in block {}", cur_height, txn_matched.len(), conf_height);
have_logged_intro = true;
}
};
let mut bump_candidates = new_hash_map();
if !txn_matched.is_empty() { maybe_log_intro(); }
for tx in txn_matched {
// Scan all input to verify is one of the outpoint spent is of interest for us
let mut claimed_outputs_material = Vec::new();
for inp in &tx.input {
if let Some((claim_id, _)) = self.claimable_outpoints.get(&inp.previous_output) {
// If outpoint has claim request pending on it...
if let Some(request) = self.pending_claim_requests.get_mut(claim_id) {
//... we need to check if the pending claim was for a subset of the outputs
// spent by the confirmed transaction. If so, we can drop the pending claim
// after ANTI_REORG_DELAY blocks, otherwise we need to split it and retry
// claiming the remaining outputs.
let mut is_claim_subset_of_tx = true;
let mut tx_inputs = tx.input.iter().map(|input| &input.previous_output).collect::<Vec<_>>();
tx_inputs.sort_unstable();
for request_input in request.outpoints() {
if tx_inputs.binary_search(&request_input).is_err() {
is_claim_subset_of_tx = false;
break;
}
}
macro_rules! clean_claim_request_after_safety_delay {
() => {
let entry = OnchainEventEntry {
txid: tx.compute_txid(),
height: conf_height,
block_hash: Some(conf_hash),
event: OnchainEvent::Claim { claim_id: *claim_id }
};
if !self.onchain_events_awaiting_threshold_conf.contains(&entry) {
self.onchain_events_awaiting_threshold_conf.push(entry);
}
}
}
// If this is our transaction (or our counterparty spent all the outputs
// before we could anyway with same inputs order than us), wait for
// ANTI_REORG_DELAY and clean the RBF tracking map.
if is_claim_subset_of_tx {
clean_claim_request_after_safety_delay!();
} else { // If false, generate new claim request with update outpoint set
let mut at_least_one_drop = false;
for input in tx.input.iter() {
if let Some(package) = request.split_package(&input.previous_output) {
claimed_outputs_material.push(package);
at_least_one_drop = true;
}
// If there are no outpoints left to claim in this request, drop it entirely after ANTI_REORG_DELAY.
if request.outpoints().is_empty() {
clean_claim_request_after_safety_delay!();
}
}
//TODO: recompute soonest_timelock to avoid wasting a bit on fees
if at_least_one_drop {
bump_candidates.insert(*claim_id, request.clone());
// If we have any pending claim events for the request being updated
// that have yet to be consumed, we'll remove them since they will
// end up producing an invalid transaction by double spending
// input(s) that already have a confirmed spend. If such spend is
// reorged out of the chain, then we'll attempt to re-spend the
// inputs once we see it.
#[cfg(debug_assertions)] {
let existing = self.pending_claim_events.iter()
.filter(|entry| entry.0 == *claim_id).count();
assert!(existing == 0 || existing == 1);
}
self.pending_claim_events.retain(|entry| entry.0 != *claim_id);
}
}
break; //No need to iterate further, either tx is our or their
} else {
panic!("Inconsistencies between pending_claim_requests map and claimable_outpoints map");
}
}
}
for package in claimed_outputs_material.drain(..) {
let entry = OnchainEventEntry {
txid: tx.compute_txid(),
height: conf_height,
block_hash: Some(conf_hash),
event: OnchainEvent::ContentiousOutpoint { package },
};
if !self.onchain_events_awaiting_threshold_conf.contains(&entry) {
self.onchain_events_awaiting_threshold_conf.push(entry);
}
}
}
// After security delay, either our claim tx got enough confs or outpoint is definetely out of reach
let onchain_events_awaiting_threshold_conf =
self.onchain_events_awaiting_threshold_conf.drain(..).collect::<Vec<_>>();
for entry in onchain_events_awaiting_threshold_conf {
if entry.has_reached_confirmation_threshold(cur_height) {
maybe_log_intro();
match entry.event {
OnchainEvent::Claim { claim_id } => {
// We may remove a whole set of claim outpoints here, as these one may have
// been aggregated in a single tx and claimed so atomically
if let Some(request) = self.pending_claim_requests.remove(&claim_id) {
for outpoint in request.outpoints() {
log_debug!(logger, "Removing claim tracking for {} due to maturation of claim package {}.",
outpoint, log_bytes!(claim_id.0));
self.claimable_outpoints.remove(outpoint);