This repository has been archived by the owner on Mar 10, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.Rmd
76 lines (51 loc) · 2.79 KB
/
index.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
title: "Liesel Tutorials"
author: "Hannes Riebl, Paul Wiemann"
date: "`r Sys.Date()`"
site: bookdown::bookdown_site
documentclass: book
bibliography: book.bib
url: https://liesel-devs.github.io/liesel-tutorials/
cover-image: https://avatars.githubusercontent.com/u/53620082
description: |
Tutorial book for the Liesel probabilistic programming framework
link-citations: yes
github-repo: liesel-devs/liesel-tutorials
---
```{r bookdown, include=FALSE}
bookdown::clean_book(clean = TRUE)
dir.create(bookdown:::output_path(), recursive = TRUE)
file.create(bookdown:::output_path(".nojekyll"))
```
```{r venv, include=FALSE}
rliesel::use_liesel_venv()
```
```{python matplotlib, include=FALSE}
import matplotlib as plt
plt.rcParams.update({"figure.max_open_warning": 0})
```
```{python pandas, include=FALSE}
import re
import pandas as pd
def format_float(x):
return re.sub(r"\.?0*$", "", f"{x:.5f}")
pd.set_option("display.float_format", format_float)
pd.set_option("display.max_rows", 30)
pd.set_option("display.max_columns", 160)
pd.set_option("display.width", 160)
pd.set_option("display.html.border", 0)
def print_df(self):
return self.to_markdown()
pd.DataFrame.__repr__ = print_df
```
# About
Welcome to the Liesel tutorial book, which aims to illustrate the features of the Liesel probabilistic programming framework by example.
Liesel's focus is on semi-parametric regression. It includes:
- [**Liesel**](https://github.com/liesel-devs/liesel), a library to express statistical models as Probabilistic Graphical Models (PGMs). Through the PGM representation, the user can build and update models in a natural way.
- **Goose**, a library to build custom MCMC algorithms with several parameter blocks and MCMC kernels such as the No U-Turn Sampler (NUTS), the Iteratively Weighted Least Squares (IWLS) sampler, or different Gibbs samplers. Goose also takes care of the MCMC bookkeeping and the chain post-processing.
- [**RLiesel**](https://github.com/liesel-devs/rliesel), an R interface for Liesel which assists the user with the configuration of semi-parametric regression models such as Generalized Additive Models for Location, Scale and Shape (GAMLSS) with different response distributions, spline-based smooth terms and shrinkage priors.
The name "Liesel" is an homage to the [Gänseliesel fountain](https://en.wikipedia.org/wiki/G%C3%A4nseliesel), landmark of Liesel's birth city [Göttingen](https://en.wikipedia.org/wiki/G%C3%B6ttingen).
## Installation
For installation instructions, see the [README](https://github.com/liesel-devs/liesel#installation) in the main repository.
## Further reading
For a scientific discussion of the software, see our paper on arXiv (in preparation). If you are programming with Liesel, the [API documentation](https://liesel-devs.github.io/liesel) might come in handy.