-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathTMMinter.m
98 lines (86 loc) · 4.94 KB
/
TMMinter.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% Cross Database Experiments %%%%%
%%%%% SFA (Li et al. TMM 2018) %%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% written by Dingquan Li
% IDM, SMS, PKU
% Last update: Sept. 15, 2018
clear;clc
caffe_path = '/home/ldq/caffe/matlab/'; % point to the caffe path
addpath(genpath(caffe_path));
%% Assuming that you have extracted the features and saved related information in corresponding mat files.
databases = {'LIVE','TID2008','TID2013','MLIVE1','MLIVE2','BID','CLIVE'};
for r = 1:length(databases)
traindatabase = databases{r};
%%
load(['./results/' traindatabase '-reproduce']); %
srocc = zeros(length(layer_names), 3, 5);
for k = 1:length(layer_names)
layer_name = layer_names{k};
im_index = index(t, :);
I = buffer(im_index,5);
for i = 1:5
train_im_index = I;
train_im_index(i,:) = [];
train_im_index(train_im_index==0) = [];
test_im_index = I(i,:);
test_im_index(test_im_index==0) = [];
train_im_index = cell2mat(arrayfun(@(i)find(ref_ids==train_im_index(i))',...
1:length(train_im_index),'UniformOutput',false));
test_im_index = cell2mat(arrayfun(@(i)find(ref_ids==test_im_index(i))',...
1:length(test_im_index),'UniformOutput',false));
train_labels = subjective_scores(train_im_index); %#ok<NASGU>
test_labels = subjective_scores(test_im_index);
p = 10; % number of components;
eval(['[~,~,~,~,beta1k{k}] = plsregress(feature1.' layer_name '(train_im_index(:)+[0:N:(Rep-1)*N],:),repmat(train_labels,Rep,1),p);']);
eval(['predict_statistics1 = [ones(length(test_im_index(:)),1) feature1.' layer_name '(test_im_index, :)]*beta1k{k};']);
eval(['[~,~,~,~,beta2k{k}] = plsregress(feature2.' layer_name '(train_im_index(:)+[0:N:(Rep-1)*N],:),repmat(train_labels,Rep,1),p);']);
eval(['predict_statistics2 = [ones(length(test_im_index(:)),1) feature2.' layer_name '(test_im_index, :)]*beta2k{k};']);
eval(['[~,~,~,~,beta3k{k}] = plsregress(feature3.' layer_name '(train_im_index(:)+[0:N:(Rep-1)*N],:),repmat(train_labels,Rep,1),p);']);
eval(['predict_statistics3 = [ones(length(test_im_index(:)),1) feature3.' layer_name '(test_im_index, :)]*beta3k{k};']);
%
predict_statistics = [predict_statistics1 predict_statistics2 predict_statistics3];
srocc(k,:,i) = corr(predict_statistics, test_labels, 'type', 'Spearman');
end
end
Avesrocc = mean(srocc,3);
[bestK, bestS] = find(Avesrocc==max(Avesrocc(:)),1,'first'); %
w = Avesrocc(bestK,:)'/sum(Avesrocc(bestK,:));
bestLayer = layer_names{bestK};
beta1 = beta1k{bestK};
beta2 = beta2k{bestK};
beta3 = beta3k{bestK};
Cross.bestLayer{r} = bestLayer;
train_im_index = 1:size(index,2);
train_im_index = cell2mat(arrayfun(@(i)find(ref_ids==train_im_index(i))',...
1:length(train_im_index),'UniformOutput',false));
train_labels = subjective_scores(train_im_index);
layer_name = bestLayer;
eval(['[~,~,~,~,beta.' layer_name '1] = plsregress(feature1.' layer_name '(train_im_index(:)+[0:N:(Rep-1)*N],:),repmat(train_labels,Rep,1),p);']);
eval(['[~,~,~,~,beta.' layer_name '2] = plsregress(feature2.' layer_name '(train_im_index(:)+[0:N:(Rep-1)*N],:),repmat(train_labels,Rep,1),p);']);
eval(['[~,~,~,~,beta.' layer_name '3] = plsregress(feature3.' layer_name '(train_im_index(:)+[0:N:(Rep-1)*N],:),repmat(train_labels,Rep,1),p);']);
Cross.beta{r} = beta;
% w
%%
for c = 1:length(databases)
testdatabase = databases{c};
load(['./results/' testdatabase '-reproduce']); %
test_im_index = 1:size(index,2);
test_im_index = cell2mat(arrayfun(@(i)find(ref_ids==test_im_index(i))',...
1:length(test_im_index),'UniformOutput',false));
test_labels = subjective_scores(test_im_index);
layer_name = bestLayer;
eval(['predict_statistics1 = [ones(length(test_im_index(:)),1) feature1.' layer_name '(test_im_index, :)]*beta.' layer_name '1;']);
eval(['predict_statistics2 = [ones(length(test_im_index(:)),1) feature2.' layer_name '(test_im_index, :)]*beta.' layer_name '2;']);
eval(['predict_statistics3 = [ones(length(test_im_index(:)),1) feature3.' layer_name '(test_im_index, :)]*beta.' layer_name '3;']);
% w1 = 1/3; w2 = 1/3; w3 = 1/3;
w1 = w(1); w2 = w(2); w3 = w(3);
predict_statistics = w1*predict_statistics1 + w2*predict_statistics2 + w3*predict_statistics3;
Cross.objective_scores{r,c} = predict_statistics;
[Cross.SROCC(r,c),Cross.KROCC(r,c),Cross.PLCC(r,c),Cross.OR(r,c),Cross.RMSE(r,c),Cross.mapped_scores{r,c}] = ...
nonlinearfitting(predict_statistics, test_labels, subjective_scoresSTD(test_im_index));
Cross.SROCC
end
end
save('./results/Cross','Cross');