-
-
Notifications
You must be signed in to change notification settings - Fork 3
/
lichess.html
865 lines (865 loc) · 39.9 KB
/
lichess.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>lichess</title>
<style>
html {
color: #1a1a1a;
background-color: #fdfdfd;
}
body {
margin: 0 auto;
max-width: 36em;
padding-left: 50px;
padding-right: 50px;
padding-top: 50px;
padding-bottom: 50px;
hyphens: auto;
overflow-wrap: break-word;
text-rendering: optimizeLegibility;
font-kerning: normal;
}
@media (max-width: 600px) {
body {
font-size: 0.9em;
padding: 12px;
}
h1 {
font-size: 1.8em;
}
}
@media print {
html {
background-color: white;
}
body {
background-color: transparent;
color: black;
font-size: 12pt;
}
p, h2, h3 {
orphans: 3;
widows: 3;
}
h2, h3, h4 {
page-break-after: avoid;
}
}
p {
margin: 1em 0;
}
a {
color: #1a1a1a;
}
a:visited {
color: #1a1a1a;
}
img {
max-width: 100%;
}
svg {
height: auto;
max-width: 100%;
}
h1, h2, h3, h4, h5, h6 {
margin-top: 1.4em;
}
h5, h6 {
font-size: 1em;
font-style: italic;
}
h6 {
font-weight: normal;
}
ol, ul {
padding-left: 1.7em;
margin-top: 1em;
}
li > ol, li > ul {
margin-top: 0;
}
blockquote {
margin: 1em 0 1em 1.7em;
padding-left: 1em;
border-left: 2px solid #e6e6e6;
color: #606060;
}
code {
font-family: Menlo, Monaco, Consolas, 'Lucida Console', monospace;
font-size: 85%;
margin: 0;
hyphens: manual;
}
pre {
margin: 1em 0;
overflow: auto;
}
pre code {
padding: 0;
overflow: visible;
overflow-wrap: normal;
}
.sourceCode {
background-color: transparent;
overflow: visible;
}
hr {
background-color: #1a1a1a;
border: none;
height: 1px;
margin: 1em 0;
}
table {
margin: 1em 0;
border-collapse: collapse;
width: 100%;
overflow-x: auto;
display: block;
font-variant-numeric: lining-nums tabular-nums;
}
table caption {
margin-bottom: 0.75em;
}
tbody {
margin-top: 0.5em;
border-top: 1px solid #1a1a1a;
border-bottom: 1px solid #1a1a1a;
}
th {
border-top: 1px solid #1a1a1a;
padding: 0.25em 0.5em 0.25em 0.5em;
}
td {
padding: 0.125em 0.5em 0.25em 0.5em;
}
header {
margin-bottom: 4em;
text-align: center;
}
#TOC li {
list-style: none;
}
#TOC ul {
padding-left: 1.3em;
}
#TOC > ul {
padding-left: 0;
}
#TOC a:not(:hover) {
text-decoration: none;
}
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
/* The extra [class] is a hack that increases specificity enough to
override a similar rule in reveal.js */
ul.task-list[class]{list-style: none;}
ul.task-list li input[type="checkbox"] {
font-size: inherit;
width: 0.8em;
margin: 0 0.8em 0.2em -1.6em;
vertical-align: middle;
}
.display.math{display: block; text-align: center; margin: 0.5rem auto;}
/* CSS for citations */
div.csl-bib-body { }
div.csl-entry {
clear: both;
margin-bottom: 0em;
}
.hanging-indent div.csl-entry {
margin-left:2em;
text-indent:-2em;
}
div.csl-left-margin {
min-width:2em;
float:left;
}
div.csl-right-inline {
margin-left:2em;
padding-left:1em;
}
div.csl-indent {
margin-left: 2em;
} </style>
</head>
<body>
<div id="refs" class="references csl-bib-body hanging-indent"
data-entry-spacing="0" role="list">
<div
id="ref-adnan:2024:unleashing-artificial-cognition-integrating-multiple-ai-systems"
class="csl-entry" role="listitem">
Adnan, Muntasir, Buddhi Gamage, Zhiwei Xu, Damith Herath, and Carlos C.
N. Kuhn. <span>“Unleashing Artificial Cognition: Integrating Multiple
<span>AI</span> Systems.”</span> <em>CoRR</em> abs/2408.04910 (2024).
doi:<a
href="https://doi.org/10.48550/ARXIV.2408.04910">10.48550/ARXIV.2408.04910</a>.
</div>
<div id="ref-ambrona:2022:practical-algorithm-chess-unwinnability"
class="csl-entry" role="listitem">
Ambrona, Miguel. <span>“A Practical Algorithm for Chess
Unwinnability.”</span> In <em>11th International Conference on Fun with
Algorithms, <span>FUN</span> 2022, May 30 to June 3, 2022, Island of
Favignana, Sicily, Italy</em>, edited by Pierre Fraigniaud and Yushi
Uno, 226:2:1–20. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
f<span>ü</span>r Informatik, 2022. doi:<a
href="https://doi.org/10.4230/LIPICS.FUN.2022.2">10.4230/LIPICS.FUN.2022.2</a>.
</div>
<div id="ref-banerjee:2024:skill-v-chance-card-board-games"
class="csl-entry" role="listitem">
Banerjee, Tathagata, Anushka De, Subhamoy Maitra, and Diganta Mukherjee.
<span>“Skill Vs. Chance Quantification for Popular Card
<span>&</span> Board Games.”</span> <em>CoRR</em> abs/2410.14363
(2024). doi:<a
href="https://doi.org/10.48550/ARXIV.2410.14363">10.48550/ARXIV.2410.14363</a>.
</div>
<div id="ref-barrish:2023:making-superhuman-ai-more-human"
class="csl-entry" role="listitem">
Barrish, Daniel, Steve Kroon, and Brink van der Merwe. <span>“Making
Superhuman <span>AI</span> More Human in Chess.”</span> In <em>Advances
in Computer Games - 18th International Conference, <span>ACG</span>
2023, Virtual Event, November 28-30, 2023, Revised Selected Papers</em>,
edited by Michael Hartisch, Chu-Hsuan Hsueh, and Jonathan Schaeffer,
14528:3–14. Lecture Notes in Computer Science. Springer, 2023. doi:<a
href="https://doi.org/10.1007/978-3-031-54968-7\_1">10.1007/978-3-031-54968-7\_1</a>.
</div>
<div id="ref-bart:2023:can-artificial-intelligence-identify-creativity"
class="csl-entry" role="listitem">
Bart, William. <span>“Can Artificial Intelligence Identify Creativity?:
An Empirical Study.”</span> <em>Journal of Creativity</em> 33, no. 2
(2023): 100057. doi:<a
href="https://doi.org/10.1016/j.yjoc.2023.100057">https://doi.org/10.1016/j.yjoc.2023.100057</a>.
</div>
<div
id="ref-bertrand:2023:limitations-elo-real-world-games-transitive-not-additive"
class="csl-entry" role="listitem">
Bertrand, Quentin, Wojciech Marian Czarnecki, and Gauthier Gidel.
<span>“On the Limitations of the Elo, Real-World Games Are Transitive,
Not Additive.”</span> In <em>International Conference on Artificial
Intelligence and Statistics, 25-27 April 2023, Palau de Congressos,
Valencia, Spain</em>, edited by Francisco J. R. Ruiz, Jennifer G. Dy,
and Jan-Willem van de Meent, 206:2905–21. Proceedings of Machine
Learning Research. <span>PMLR</span>, 2023. <a
href="https://proceedings.mlr.press/v206/bertrand23a.html">https://proceedings.mlr.press/v206/bertrand23a.html</a>.
</div>
<div id="ref-bjorkqvist:2024:estimating-puzzlingness-chess-puzzles"
class="csl-entry" role="listitem">
Björkqvist, Sebastian. <span>“<span class="nocase">Estimating the
Puzzlingness of Chess Puzzles</span>.”</span> In <em><span>IEEE</span>
International Conference on Big Data, Big Data 2024, Washington DC, USA,
December 15-18, 2024</em>. <span>IEEE</span>, 2024.
</div>
<div id="ref-chowdhary:2023:quantifying-human-performance-chess"
class="csl-entry" role="listitem">
Chowdhary, Sandeep, Iacopo Iacopini, and Federico Battiston.
<span>“Quantifying Human Performance in Chess.”</span> <em>Scientific
Reports</em> 13, no. 1 (February 6, 2023): 2113. doi:<a
href="https://doi.org/10.1038/s41598-023-27735-9">10.1038/s41598-023-27735-9</a>.
</div>
<div
id="ref-chowdhury:2021:predicting-chess-openings-modelling-opponents"
class="csl-entry" role="listitem">
Chowdhury, Debarpan Bose, and Banashree Sen. <span>“Predicting Chess
Opening Through Modelling of Chess Opponents.”</span> <em>Webology
(ISSN: 1735-188X)</em> 18, no. 6 (2021).
</div>
<div id="ref-comarela:2021:lightweight-approach-prediction-errors-chess"
class="csl-entry" role="listitem">
Comarela, Giovanni, and Davi Silva. <span>“A Lightweight Approach for
Predicting Errors in Chess Matches.”</span> In <em>Anais Do XVIII
Encontro Nacional de Inteligência Artificial e Computacional</em>,
703–14. Porto Alegre, RS, Brasil: SBC, 2021. doi:<a
href="https://doi.org/10.5753/eniac.2021.18296">10.5753/eniac.2021.18296</a>.
</div>
<div id="ref-czech:2021:improving-alphazero-monte-carlo-graph-search"
class="csl-entry" role="listitem">
Czech, Johannes, Patrick Korus, and Kristian Kersting. <span>“Improving
AlphaZero Using Monte-Carlo Graph Search.”</span> In <em>Proceedings of
the Thirty-First International Conference on Automated Planning and
Scheduling, <span>ICAPS</span> 2021, Guangzhou, China (Virtual), August
2-13, 2021</em>, edited by Susanne Biundo, Minh Do, Robert Goldman,
Michael Katz, Qiang Yang, and Hankz Hankui Zhuo, 103–11.
<span>AAAI</span> Press, 2021. <a
href="https://ojs.aaai.org/index.php/ICAPS/article/view/15952">https://ojs.aaai.org/index.php/ICAPS/article/view/15952</a>.
</div>
<div
id="ref-czech:2020:learning-crazyhouse-above-world-champion-deep-neural-networks-human-data"
class="csl-entry" role="listitem">
Czech, Johannes, Moritz Willig, Alena Beyer, Kristian Kersting, and
Johannes Fürnkranz. <span>“Learning to Play the Chess Variant Crazyhouse
Above World Champion Level with Deep Neural Networks and Human
Data.”</span> <em>Frontiers Artif. Intell.</em> 3 (2020): 24. doi:<a
href="https://doi.org/10.3389/FRAI.2020.00024">10.3389/FRAI.2020.00024</a>.
</div>
<div id="ref-das:2020:leveraging-rationales-human-task-performance"
class="csl-entry" role="listitem">
Das, Devleena, and Sonia Chernova. <span>“Leveraging Rationales to
Improve Human Task Performance.”</span> In <em>Proceedings of the 25th
International Conference on Intelligent User Interfaces</em>, 510–18.
IUI ’20. New York, NY, USA: Association for Computing Machinery, 2020.
doi:<a
href="https://doi.org/10.1145/3377325.3377512">10.1145/3377325.3377512</a>.
</div>
<div
id="ref-de-marzo:2023:complexity-similarity-chess-openings-community-data"
class="csl-entry" role="listitem">
De Marzo, Giordano, and Vito D. P. Servedio. <span>“Quantifying the
Complexity and Similarity of Chess Openings Using Online Chess Community
Data.”</span> <em>Scientific Reports</em> 13, no. 1 (April 1, 2023):
5327. doi:<a
href="https://doi.org/10.1038/s41598-023-31658-w">10.1038/s41598-023-31658-w</a>.
</div>
<div
id="ref-deletang:2024:generative-reinforcement-learning-with-transformers"
class="csl-entry" role="listitem">
Deletang, Gregoire, Anian Ruoss, Li Kevin Wenliang, Elliot Catt, Tim
Genewein, Jordi Grau-Moya, Marcus Hutter, and Joel Veness.
<span>“Generative Reinforcement Learning with Transformers,”</span>
2024. <a
href="https://openreview.net/forum?id=6qtDu7hVPF">https://openreview.net/forum?id=6qtDu7hVPF</a>.
</div>
<div
id="ref-demeter:2021:probing-learning-representation-language-models-closed-domains"
class="csl-entry" role="listitem">
Demeter, David, and Doug Downey. <span>“Who<span>’</span>s on First?:
Probing the Learning and Representation Capabilities of Language Models
on Deterministic Closed Domains.”</span> In <em>Proceedings of the 25th
Conference on Computational Natural Language Learning</em>, edited by
Arianna Bisazza and Omri Abend, 210–22. Online: Association for
Computational Linguistics, 2021. doi:<a
href="https://doi.org/10.18653/v1/2021.conll-1.16">10.18653/v1/2021.conll-1.16</a>.
</div>
<div id="ref-ding:2024:easy2hard-bench" class="csl-entry"
role="listitem">
Ding, Mucong, Chenghao Deng, Jocelyn Choo, Zichu Wu, Aakriti Agrawal,
Avi Schwarzschild, Tianyi Zhou, et al. <span>“Easy2Hard-Bench:
Standardized Difficulty Labels for Profiling LLM Performance and
Generalization.”</span> In <em>NeurIPS 2024</em>, 2024. <a
href="https://www.microsoft.com/en-us/research/publication/easy2hard-bench-standardized-difficulty-labels-for-profiling-llm-performance-and-generalization/">https://www.microsoft.com/en-us/research/publication/easy2hard-bench-standardized-difficulty-labels-for-profiling-llm-performance-and-generalization/</a>.
</div>
<div
id="ref-qian:2020:comparative-study-online-chess-educational-products"
class="csl-entry" role="listitem">
Dong, Qian, and Rong Miao. <span>“A Comparative Study of Chess Online
Educational Products.”</span> In <em>Blended Learning. Education in a
Smart Learning Environment: 13th International Conference, ICBL 2020,
Bangkok, Thailand, August 24–27, 2020, Proceedings</em>, 101–13. Berlin,
Heidelberg: Springer-Verlag, 2020. doi:<a
href="https://doi.org/10.1007/978-3-030-51968-1_9">10.1007/978-3-030-51968-1_9</a>.
</div>
<div id="ref-eisma:2024:turing-tests-chess-human-subjectivity"
class="csl-entry" role="listitem">
Eisma, Yke Bauke, Robin Koerts, and Joost de Winter. <span>“Turing Tests
in Chess: An Experiment Revealing the Role of Human
Subjectivity.”</span> <em>Computers in Human Behavior Reports</em>,
2024, 100496. doi:<a
href="https://doi.org/10.1016/j.chbr.2024.100496">https://doi.org/10.1016/j.chbr.2024.100496</a>.
</div>
<div id="ref-feng:2023:chessgpt-policy-learning-language-modeling"
class="csl-entry" role="listitem">
Feng, Xidong, Yicheng Luo, Ziyan Wang, Hongrui Tang, Mengyue Yang, Kun
Shao, David Mguni, Yali Du, and Jun Wang. <span>“ChessGPT: Bridging
Policy Learning and Language Modeling.”</span> In <em>Advances in Neural
Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023</em>, edited by Alice Oh, Tristan Naumann, Amir
Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, 2023. <a
href="http://papers.nips.cc/paper\_files/paper/2023/hash/16b14e3f288f076e0ca73bdad6405f77-Abstract-Datasets\_and\_Benchmarks.html">http://papers.nips.cc/paper\_files/paper/2023/hash/16b14e3f288f076e0ca73bdad6405f77-Abstract-Datasets\_and\_Benchmarks.html</a>.
</div>
<div id="ref-guntz:2018:role-emotion-problem-solving" class="csl-entry"
role="listitem">
Guntz, Thomas, James L. Crowley, Dominique Vaufreydaz, Raffaella
Balzarini, and Philippe Dessus. <span>“The Role of Emotion in Problem
Solving: First Results from Observing Chess.”</span> In <em>Proceedings
of the Workshop on Modeling Cognitive Processes from Multimodal Data,
MCPMDICMI 2018, Boulder, CO, USA, October 16, 2018</em>, 12.
<span>ACM</span>, 2018. <a
href="http://dl.acm.org/citation.cfm?id=3279846">http://dl.acm.org/citation.cfm?id=3279846</a>.
</div>
<div
id="ref-helfenstein:2024:checkmating-one-many-mixture-of-experts-mcts-improve-chess"
class="csl-entry" role="listitem">
Helfenstein, Felix, Jannis Blüml, Johannes Czech, and Kristian Kersting.
<span>“Checkmating One, by Using Many: Combining Mixture of Experts with
<span>MCTS</span> to Improve in Chess.”</span> <em>CoRR</em>
abs/2401.16852 (2024). doi:<a
href="https://doi.org/10.48550/ARXIV.2401.16852">10.48550/ARXIV.2401.16852</a>.
</div>
<div
id="ref-holdaway:2021:risk-taking-adversarial-games-what-billion-chess-games-tell-us"
class="csl-entry" role="listitem">
Holdaway, Cameron, and Ed Vul. <span>“Risk-Taking in Adversarial Games:
What Can 1 Billion Online Chess Games Tell Us?”</span> In
<em>Proceedings of the 43rd Annual Meeting of the Cognitive Science
Society, CogSci 2021, Virtual, July 26-29, 2021</em>, edited by W.
Tecumseh Fitch, Claus Lamm, Helmut Leder, and Kristin Teßmar-Raible.
cognitivesciencesociety.org, 2021. <a
href="https://escholarship.org/uc/item/403764rd">https://escholarship.org/uc/item/403764rd</a>.
</div>
<div id="ref-hoque:2022:classification-anomaly-detection-chess"
class="csl-entry" role="listitem">
Hoque, Masudul. <span>“Classification of Chess Games: An Exploration of
Classifiers for Anomaly Detection in Chess.”</span> Master's thesis,
Minnesota State University, Mankato, 2021.
</div>
<div
id="ref-iavich:2024:detecting-fair-play-violations-chess-neural-networks"
class="csl-entry" role="listitem">
Iavich, Maksim, and Zura Kevanishvili. <span>“Detecting Fair Play
Violations in Chess Using Neural Networks.”</span> In <em>Proceedings of
29th International Conference Information Society and University
Studies</em>, 3341:121–27. <span>CEUR</span> Workshop Proceedings.
CEUR-WS.org, 2024. <a
href="https://ceur-ws.org/Vol-3885/paper13.pdf">https://ceur-ws.org/Vol-3885/paper13.pdf</a>.
</div>
<div id="ref-jenner:2024:evidence-lookahead-chess-neural-network"
class="csl-entry" role="listitem">
Jenner, Erik, Shreyas Kapur, Vasil Georgiev, Cameron Allen, Scott
Emmons, and Stuart Russell. <span>“Evidence of Learned Look-Ahead in a
Chess-Playing Neural Network.”</span> <em>CoRR</em> abs/2406.00877
(2024). doi:<a
href="https://doi.org/10.48550/ARXIV.2406.00877">10.48550/ARXIV.2406.00877</a>.
</div>
<div id="ref-karn:2024:personalized-recommendation-chess-puzzles"
class="csl-entry" role="listitem">
Karn, Aryan, Chinmay Anil Biradar, Aryan Puranik, Attili Krishna
Kireeti, and R Jayashree. <span>“Personalized Recommendation of Chess
Puzzles.”</span> In <em>Computer Science Engineering: Proceedings of the
1st International Conference on Computing and Intelligent Information
Systems (ICCIIS 2024), Bangalore, India, 19-20th April, 2024 Volume
1</em>, 29. CRC Press, 2024.
</div>
<div id="ref-karvonen:2024:dictionary-learning-board-games"
class="csl-entry" role="listitem">
Karvonen, Adam, Benjamin Wright, Can Rager, Rico Angell, Jannik
Brinkmann, Logan Riggs Smith, Claudio Mayrink Verdun, David Bau, and
Samuel Marks. <span>“Measuring Progress in Dictionary Learning for
Language Model Interpretability with Board Game Models.”</span> In
<em>ICML 2024 Workshop on Mechanistic Interpretability</em>, 2024. <a
href="https://openreview.net/forum?id=qzsDKwGJyB">https://openreview.net/forum?id=qzsDKwGJyB</a>.
</div>
<div
id="ref-krishnan:2022:synthesizing-interpretable-chess-tactics-player-games"
class="csl-entry" role="listitem">
Krishnan, Abhijeet, and Chris Martens. <span>“Synthesizing Interpretable
Chess Tactics from Player Games.”</span> In <em>Proceedings of the
Workshop on Artificial Intelligence for Strategy Games (SG) and Esports
Analytics (EA), 18th AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment</em>. American Association for
Artificial Intelligence, 2022.
</div>
<div
id="ref-krishnan:2022:automatic-synthesis-interpretable-chess-tactics"
class="csl-entry" role="listitem">
———. <span>“Towards the Automatic Synthesis of Interpretable Chess
Tactics.”</span> In <em>Proceedings of the Explainable Agency in
Artificial Intelligence Workshop, 36th AAAI Conference on Artificial
Intelligence</em>, 91–97. American Association of Artificial
Intelligence, 2022.
</div>
<div
id="ref-kuperwajs:2024:learning-from-rewards-social-information-strategic-behavior"
class="csl-entry" role="listitem">
Kuperwajs, Ionatan, Bas van Opheusden, Evan Russek, and Tom Griffiths.
<span>“Learning from Rewards and Social Information in Naturalistic
Strategic Behavior,”</span> August 2024. doi:<a
href="https://doi.org/10.31234/osf.io/d8zje">10.31234/osf.io/d8zje</a>.
</div>
<div id="ref-laarhoven:2022:transparent-cheat-detection-online-chess"
class="csl-entry" role="listitem">
Laarhoven, Thijs, and Aditya Ponukumati. <span>“Towards Transparent
Cheat Detection in Online Chess: An Application of Human and Computer
Decision-Making Preferences.”</span> In <em>Computers and Games -
International Conference, <span>CG</span> 2022, Virtual Event, November
22-24, 2022, Revised Selected Papers</em>, edited by Cameron Browne,
Akihiro Kishimoto, and Jonathan Schaeffer, 13865:163–80. Lecture Notes
in Computer Science. Springer, 2022. doi:<a
href="https://doi.org/10.1007/978-3-031-34017-8\_14">10.1007/978-3-031-34017-8\_14</a>.
</div>
<div id="ref-le-louedec:2019:chess-player-attention-prediction"
class="csl-entry" role="listitem">
Louedec, Justin Le, Thomas Guntz, James L. Crowley, and Dominique
Vaufreydaz. <span>“Deep Learning Investigation for Chess Player
Attention Prediction Using Eye-Tracking and Game Data.”</span> In
<em>Proceedings of the 11th <span>ACM</span> Symposium on Eye Tracking
Research <span>&</span> Applications, <span>ETRA</span> 2019, Denver
, CO, USA, June 25-28, 2019</em>, edited by Krzysztof Krejtz and Bonita
Sharif, 1:1–9. <span>ACM</span>, 2019. doi:<a
href="https://doi.org/10.1145/3314111.3319827">10.1145/3314111.3319827</a>.
</div>
<div id="ref-maharaj:2022:gambits-theory-evidence" class="csl-entry"
role="listitem">
Maharaj, Shiva, Nick Polson, and Christian Turk. <span>“Gambits: Theory
and Evidence.”</span> <em>Applied Stochastic Models in Business and
Industry</em> 38, no. 4 (2022): 572–89. doi:<a
href="https://doi.org/10.1002/asmb.2684">https://doi.org/10.1002/asmb.2684</a>.
</div>
<div id="ref-mcilroy-young:2020:aligning-superhuman-ai-human-behavior"
class="csl-entry" role="listitem">
McIlroy-Young, Reid, Siddhartha Sen, Jon M. Kleinberg, and Ashton
Anderson. <span>“Aligning Superhuman <span>AI</span> with Human
Behavior: Chess as a Model System.”</span> In <em><span>KDD</span> ’20:
The 26th <span>ACM</span> <span>SIGKDD</span> Conference on Knowledge
Discovery and Data Mining, Virtual Event, CA, USA, August 23-27,
2020</em>, edited by Rajesh Gupta, Yan Liu, Jiliang Tang, and B. Aditya
Prakash, 1677–87. <span>ACM</span>, 2020. doi:<a
href="https://doi.org/10.1145/3394486.3403219">10.1145/3394486.3403219</a>.
</div>
<div
id="ref-mcilroy-young:2022:learning-models-individual-behavior-chess"
class="csl-entry" role="listitem">
McIlroy-Young, Reid, Russell Wang, Siddhartha Sen, Jon M. Kleinberg, and
Ashton Anderson. <span>“Learning Models of Individual Behavior in
Chess.”</span> In <em><span>KDD</span> ’22: The 28th <span>ACM</span>
<span>SIGKDD</span> Conference on Knowledge Discovery and Data Mining,
Washington, DC, USA, August 14 - 18, 2022</em>, edited by Aidong Zhang
and Huzefa Rangwala, 1253–63. <span>ACM</span>, 2022. doi:<a
href="https://doi.org/10.1145/3534678.3539367">10.1145/3534678.3539367</a>.
</div>
<div
id="ref-mcilroy-young:2020:learning-personalized-models-human-behavior-chess"
class="csl-entry" role="listitem">
———. <span>“Learning Personalized Models of Human Behavior in
Chess.”</span> <em>CoRR</em> abs/2008.10086 (2020). <a
href="https://arxiv.org/abs/2008.10086">https://arxiv.org/abs/2008.10086</a>.
</div>
<div id="ref-mcilroy-young:2021:chess-stylometry" class="csl-entry"
role="listitem">
McIlroy-Young, Reid, Yu Wang, Siddhartha Sen, Jon M. Kleinberg, and
Ashton Anderson. <span>“Detecting Individual Decision-Making Style:
Exploring Behavioral Stylometry in Chess.”</span> In <em>Advances in
Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
Virtual</em>, edited by Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N.
Dauphin, Percy Liang, and Jennifer Wortman Vaughan, 24482–97, 2021. <a
href="https://proceedings.neurips.cc/paper/2021/hash/ccf8111910291ba472b385e9c5f59099-Abstract.html">https://proceedings.neurips.cc/paper/2021/hash/ccf8111910291ba472b385e9c5f59099-Abstract.html</a>.
</div>
<div id="ref-milosz:2024:predicting-puzzle-difficulty-transformers"
class="csl-entry" role="listitem">
Miłosz, Szymon, and Paweł Kapusta. <span>“<span
class="nocase">Predicting Chess Puzzle Difficulty with
Transformers</span>.”</span> In <em><span>IEEE</span> International
Conference on Big Data, Big Data 2024, Washington DC, USA, December
15-18, 2024</em>. <span>IEEE</span>, 2024.
</div>
<div id="ref-mok:2024:measuring-digital-welfare-online-systems"
class="csl-entry" role="listitem">
Mok, Lillio. <span>“Measuring the Digital Welfare of Online Social
Systems.”</span> Doctoral Thesis, Univesity of Toronto, 2024.
</div>
<div id="ref-mok:2021:time-online-digital-well-being" class="csl-entry"
role="listitem">
Mok, Lillio, and Ashton Anderson. <span>“The Complementary Nature of
Perceived and Actual Time Spent Online in Measuring Digital
Well-Being.”</span> <em>Proc. ACM Hum.-Comput. Interact.</em> 5, no.
CSCW1 (April 2021). doi:<a
href="https://doi.org/10.1145/3449160">10.1145/3449160</a>.
</div>
<div id="ref-muecke:2022:check-mate-sanity-check-trustworthy-ai"
class="csl-entry" role="listitem">
Mücke, Sascha, and Lukas Pfahler. <span>“Check Mate: <span>A</span>
Sanity Check for Trustworthy <span>AI</span>.”</span> In <em>Proceedings
of the <span>LWDA</span> 2022 Workshops: FGWM, FGKD, and FGDB,
Hildesheim (Germany), Oktober 5-7th, 2022</em>, edited by Pascal Reuss,
Viktor Eisenstadt, Jakob Michael Schönborn, and Jero Schäfer,
3341:91–103. <span>CEUR</span> Workshop Proceedings. CEUR-WS.org, 2022.
<a
href="https://ceur-ws.org/Vol-3341/KDML-LWDA\_2022\_CRC\_8977.pdf">https://ceur-ws.org/Vol-3341/KDML-LWDA\_2022\_CRC\_8977.pdf</a>.
</div>
<div
id="ref-mujagic:2024:predictive-analysis-chess-player-performance-maching-learning"
class="csl-entry" role="listitem">
Mujagić, Amar, Adnan Mujagić, and Dželila Mehanović. <span>“Predictive
Analysis of Chess Player Performance: An Analysis of Factors Influencing
Competitive Success Using Machine Learning Techniques.”</span> In
<em>Advanced Technologies, Systems, and Applications IX</em>, edited by
Naida Ademović, Zlatan Akšamija, and Almir Karabegović, 392–408. Cham:
Springer Nature Switzerland, 2024.
</div>
<div id="ref-narayanan:2023:improving-strength-human-models-chess"
class="csl-entry" role="listitem">
Narayanan, Saumik, Kassa Korley, Chien-Ju Ho, and Siddhartha Sen.
<span>“Improving the Strength of Human-Like Models in Chess,”</span>
2023. <a
href="https://openreview.net/forum?id=fJY2iCssvIs">https://openreview.net/forum?id=fJY2iCssvIs</a>.
</div>
<div
id="ref-nie:2024:discovering-high-quality-chess-puzzles-offline-reinforcement-learning"
class="csl-entry" role="listitem">
Nie, Allen, Anirudhan Badrinath, Nicholas Tomlin, Timothy Dai, Carissa
Yip, Rose E Wang, Emma Brunskill, and Christopher J Piech.
<span>“Discovering High-Quality Chess Puzzles Through One Billion Plays
with Offline Reinforcement Learning,”</span> 2024. <a
href="https://openreview.net/forum?id=YKW98Icu1X">https://openreview.net/forum?id=YKW98Icu1X</a>.
</div>
<div
id="ref-o-rourke:2024:alternative-chess-rating-model-latent-variables"
class="csl-entry" role="listitem">
O’Rourke, Patrick. <span>“An Alternative Chess Rating Model Based on
Latent Variables.”</span> Master's thesis, University College Dublin,
2024.
</div>
<div id="ref-omori:2024:chess-rating-estimation-moves" class="csl-entry"
role="listitem">
Omori, Michael, and Prasad Tadepalli. <span>“Chess Rating Estimation
from Moves and Clock Times Using a CNN-LSTM,”</span> 2024. <a
href="https://arxiv.org/abs/2409.11506">https://arxiv.org/abs/2409.11506</a>.
</div>
<div
id="ref-palsson:2024:empirical-evaluation-concept-probing-game-playing-agents"
class="csl-entry" role="listitem">
Pálsson, Aalsteinn, and Yngvi Björnsson. <span>“Empirical Evaluation of
Concept Probing for Game-Playing Agents.”</span> In
<em><span>ECAI</span> 2024 - 27th European Conference on Artificial
Intelligence, 19-24 October 2024, Santiago de Compostela, Spain -
Including 13th Conference on Prestigious Applications of Intelligent
Systems <span>(PAIS</span> 2024)</em>, edited by Ulle Endriss, Francisco
S. Melo, Kerstin Bach, Alberto José Bugarı́n Diz, Jose Maria
Alonso-Moral, Senén Barro, and Fredrik Heintz, 392:874–81. Frontiers in
Artificial Intelligence and Applications. <span>IOS</span> Press, 2024.
doi:<a href="https://doi.org/10.3233/FAIA240574">10.3233/FAIA240574</a>.
</div>
<div id="ref-patria:2021:cheat-detection-online-chess" class="csl-entry"
role="listitem">
Patria, Reyhan, Sean Favian, Anggoro Caturdewa, and Derwin Suhartono.
<span>“Cheat Detection on Online Chess Games Using Convolutional and
Dense Neural Network.”</span> In <em>2021 4th International Seminar on
Research of Information Technology and Intelligent Systems
(ISRITI)</em>, 389–95, 2021. doi:<a
href="https://doi.org/10.1109/ISRITI54043.2021.9702792">10.1109/ISRITI54043.2021.9702792</a>.
</div>
<div id="ref-puri:2020:explain-your-move" class="csl-entry"
role="listitem">
Puri, Nikaash, Sukriti Verma, Piyush Gupta, Dhruv Kayastha, Shripad V.
Deshmukh, Balaji Krishnamurthy, and Sameer Singh. <span>“Explain Your
Move: Understanding Agent Actions Using Specific and Relevant Feature
Attribution.”</span> In <em>8th International Conference on Learning
Representations, <span>ICLR</span> 2020, Addis Ababa, Ethiopia, April
26-30, 2020</em>. OpenReview.net, 2020. <a
href="https://openreview.net/forum?id=SJgzLkBKPB">https://openreview.net/forum?id=SJgzLkBKPB</a>.
</div>
<div id="ref-rabii:2021:revealing-game-dynamics-word-embeddings"
class="csl-entry" role="listitem">
Rabii, Younès, and Michael Cook. <span>“Revealing Game Dynamics via Word
Embeddings of Gameplay Data.”</span> In <em>Proceedings of the
Seventeenth <span>AAAI</span> Conference on Artificial Intelligence and
Interactive Digital Entertainment, <span>AIIDE</span> 2021, Virtual,
October 11-15, 2021</em>, edited by David Thue and Stephen G. Ware,
187–94. <span>AAAI</span> Press, 2021. <a
href="https://ojs.aaai.org/index.php/AIIDE/article/view/18907">https://ojs.aaai.org/index.php/AIIDE/article/view/18907</a>.
</div>
<div
id="ref-rafaralahy:2024-pairwise-ltr-chess-puzzle-difficulty-prediction"
class="csl-entry" role="listitem">
Rafaralahy, Andry. <span>“<span class="nocase">Pairwise Learning to Rank
for Chess Puzzle Difficulty Prediction</span>.”</span> In
<em><span>IEEE</span> International Conference on Big Data, Big Data
2024, Washington DC, USA, December 15-18, 2024</em>. <span>IEEE</span>,
2024.
</div>
<div id="ref-rosemarin:2019:playing-chess-human-level-style"
class="csl-entry" role="listitem">
Rosemarin, Hanan, and Ariel Rosenfeld. <span>“Playing Chess at a Human
Desired Level and Style.”</span> In <em>Proceedings of the 7th
International Conference on Human-Agent Interaction, <span>HAI</span>
2019, Kyoto, Japan, October 06-10, 2019</em>, edited by Natsuki Oka,
Tomoko Koda, Mohammad Obaid, Hideyuki Nakanishi, Omar Mubin, and Kazuaki
Tanaka, 76–80. <span>ACM</span>, 2019. doi:<a
href="https://doi.org/10.1145/3349537.3351904">10.1145/3349537.3351904</a>.
</div>
<div
id="ref-ruoss:2024:amortized-planning-transformers-case-study-chess"
class="csl-entry" role="listitem">
Ruoss, Anian, Gregoire Deletang, Sourabh Medapati, Jordi Grau-Moya, Li
Kevin Wenliang, Elliot Catt, John Reid, Cannada A. Lewis, Joel Veness,
and Tim Genewein. <span>“Amortized Planning with Large-Scale
Transformers: A Case Study on Chess.”</span> In <em>The Thirty-Eighth
Annual Conference on Neural Information Processing Systems</em>, 2024.
<a
href="https://openreview.net/forum?id=XlpipUGygX">https://openreview.net/forum?id=XlpipUGygX</a>.
</div>
<div id="ref-russel:2022:thinking-online-chess-computation"
class="csl-entry" role="listitem">
Russek, Evan, Daniel Acosta-Kane, Bas van Opheusden, Marcelo Mattar, and
Tom Griffiths. <span>“Time Spent Thinking in Online Chess Reflects the
Value of Computation.”</span> <em>PsyArXiv</em>, 2022. doi:<a
href="https://doi.org/10.31234/osf.io/8j9zx">10.31234/osf.io/8j9zx</a>.
</div>
<div
id="ref-ruta:2024:moves-based-prediction-chess-puzzle-difficulty-convolutional-neural-networks"
class="csl-entry" role="listitem">
Ruta, Dymitr, Ming Liu, and Ling Cen. <span>“<span class="nocase">Moves
Based Prediction of Chess Puzzle Difficulty with Convolutional Neural
Networks</span>.”</span> In <em><span>IEEE</span> International
Conference on Big Data, Big Data 2024, Washington DC, USA, December
15-18, 2024</em>. <span>IEEE</span>, 2024.
</div>
<div id="ref-salant:2022:complexity-satisficing-theory-evidence-chess"
class="csl-entry" role="listitem">
Salant, Yuval, and Jorg L Spenkuch. <em>Complexity and Satisficing:
Theory with Evidence from Chess</em>. Working Paper. Working Paper
Series. National Bureau of Economic Research, 2022. doi:<a
href="https://doi.org/10.3386/w30002">10.3386/w30002</a>.
</div>
<div id="ref-sanjaya:2022-non-transitivity-chess" class="csl-entry"
role="listitem">
Sanjaya, Ricky, Jun Wang, and Yaodong Yang. <span>“Measuring the
Non-Transitivity in Chess.”</span> <em>Algorithms</em> 15, no. 5 (2022):
152. doi:<a
href="https://doi.org/10.3390/A15050152">10.3390/A15050152</a>.
</div>
<div
id="ref-schultz:2024:mastering-board-games-external-internal-planning-language-models"
class="csl-entry" role="listitem">
Schultz, John, Jakub Adamek, Matej Jusup, Marc Lanctot, Michael Kaisers,
Sarah Perrin, Daniel Hennes, et al. <span>“Mastering Board Games by
External and Internal Planning with Language Models,”</span> 2024. <a
href="https://arxiv.org/abs/2412.12119">https://arxiv.org/abs/2412.12119</a>.
</div>
<div
id="ref-schuett:2024:estimating-chess-puzzle-difficulty-without-past-records-using-neural-network"
class="csl-entry" role="listitem">
Schütt, Anan, Tobias Huber, and Elisabeth André. <span>“<span
class="nocase">Estimating Chess Puzzle Difficulty Without Past Game
Records Using a Human Problem-Solving Inspired Neural Network
Architecture</span>.”</span> In <em><span>IEEE</span> International
Conference on Big Data, Big Data 2024, Washington DC, USA, December
15-18, 2024</em>. <span>IEEE</span>, 2024.
</div>
<div id="ref-schwarzschild:2021:datasets-easy-hard-examples"
class="csl-entry" role="listitem">
Schwarzschild, Avi, Eitan Borgnia, Arjun Gupta, Arpit Bansal, Zeyad
Emam, Furong Huang, Micah Goldblum, and Tom Goldstein. <span>“Datasets
for Studying Generalization from Easy to Hard Examples.”</span>
<em>CoRR</em> abs/2108.06011 (2021). <a
href="https://arxiv.org/abs/2108.06011">https://arxiv.org/abs/2108.06011</a>.
</div>
<div
id="ref-schwarzschild:2021:can-you-learn-algorithm-easy-hard-examples"
class="csl-entry" role="listitem">
Schwarzschild, Avi, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi
Vishkin, Micah Goldblum, and Tom Goldstein. <span>“Can You Learn an
Algorithm? Generalizing from Easy to Hard Problems with Recurrent
Networks.”</span> In <em>Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information Processing Systems
2021, NeurIPS 2021, December 6-14, 2021, Virtual</em>, edited by
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang,
and Jennifer Wortman Vaughan, 6695–6706, 2021. <a
href="https://proceedings.neurips.cc/paper/2021/hash/3501672ebc68a5524629080e3ef60aef-Abstract.html">https://proceedings.neurips.cc/paper/2021/hash/3501672ebc68a5524629080e3ef60aef-Abstract.html</a>.
</div>
<div id="ref-setiawan:2018:analysis-chess-skills-mathematics-learning"
class="csl-entry" role="listitem">
Setiawan, Andika Yogi, and Henri Gunawan Pratama. <span>“Analysis of
Chess Playing Skills on Mathematics Learning Outcomes Junior Athletes
Raja Kombi Trenggalek Chess Club.”</span> <em>PHEDHERAL</em> 18, no. 1
(n.d.): 37–46. doi:<a
href="https://doi.org/10.20961/phduns.v18i1.51318">10.20961/phduns.v18i1.51318</a>.
</div>
<div id="ref-song:2023:investigation-sicilian-defense" class="csl-entry"
role="listitem">
Song, Ziming. <span>“Investigation of the Sicilian Defense: Winning
Rates and Strategic Discrimination.”</span> <em>Interdisciplinary
Humanities and Communication Studies</em> 1, no. 4 (2023).
</div>
<div
id="ref-stanek:2024:bad-crypto-chessography-weak-randomness-chess-games"
class="csl-entry" role="listitem">
Stanek, Martin. <span>“Bad Crypto: Chessography and Weak Randomness of
Chess Games,”</span> 2024. <a
href="https://arxiv.org/abs/2412.09742">https://arxiv.org/abs/2412.09742</a>.
</div>
<div id="ref-stockl:2021:watching-language-model-learning-chess"
class="csl-entry" role="listitem">
Stöckl, Andreas. <span>“Watching a Language Model Learning
Chess.”</span> In <em>Proceedings of the International Conference on
Recent Advances in Natural Language Processing (RANLP 2021)</em>, edited
by Ruslan Mitkov and Galia Angelova, 1369–79. Held Online: INCOMA Ltd.,
2021. <a
href="https://aclanthology.org/2021.ranlp-1.153">https://aclanthology.org/2021.ranlp-1.153</a>.
</div>
<div
id="ref-tay:2023:social-status-competitors-cause-decision-maker-errors"
class="csl-entry" role="listitem">
Tay, Li Qian. <span>“Can Higher Social Status of Competitors Cause
Decision Makers to Commit More Errors?”</span> In <em>Proceedings of the
Annual Meeting of the Cognitive Science Society</em>, Vol. 45, 2023. <a
href="https://escholarship.org/uc/item/85d620jz">https://escholarship.org/uc/item/85d620jz</a>.
</div>
<div id="ref-tijhuis:2023:predicting-chess-rating-single-game"
class="csl-entry" role="listitem">
Tijhuis, Tim, Paris Mavromoustakos Blom, and Pieter Spronck.
<span>“Predicting Chess Player Rating Based on a Single Game.”</span> In
<em><span>IEEE</span> Conference on Games, CoG 2023, Boston, MA, USA,
August 21-24, 2023</em>, 1–8. <span>IEEE</span>, 2023. doi:<a
href="https://doi.org/10.1109/COG57401.2023.10333133">10.1109/COG57401.2023.10333133</a>.
</div>
<div id="ref-wang:2024:explore-reasoning-capability-llms-chess-testbed"
class="csl-entry" role="listitem">
Wang, Shu, Lei Ji, Renxi Wang, Wenxiao Zhao, Haokun Liu, Yifan Hou, and
Ying Nian Wu. <span>“Explore the Reasoning Capability of LLMs in the
Chess Testbed,”</span> 2024. <a
href="https://arxiv.org/abs/2411.06655">https://arxiv.org/abs/2411.06655</a>.
</div>
<div
id="ref-wieczerzak:2022:dataset-experimental-investigation-chess-position-evaluation-neural-network"
class="csl-entry" role="listitem">
Wieczerzak, Dawid, and Pawel Czarnul. <span>“Dataset Related
Experimental Investigation of Chess Position Evaluation Using a Deep
Neural Network.”</span> In <em>Parallel Processing and Applied
Mathematics - 14th International Conference, <span>PPAM</span> 2022,
Gdansk, Poland, September 11-14, 2022, Revised Selected Papers, Part
<span>I</span></em>, edited by Roman Wyrzykowski, Jack J. Dongarra, Ewa
Deelman, and Konrad Karczewski, 13826:429–40. Lecture Notes in Computer
Science. Springer, 2022. doi:<a
href="https://doi.org/10.1007/978-3-031-30442-2\_32">10.1007/978-3-031-30442-2\_32</a>.
</div>
<div id="ref-woodruff:2024:predicting-chess-puzzle-difficulty"
class="csl-entry" role="listitem">
Woodruff, Tyler, Oleg Filatov, and Marco Cognetta. <span>“<span
class="nocase">The bread emoji Team’s Submission to the IEEE BigData
2024 Cup: Predicting Chess Puzzle Difficulty Challenge</span>.”</span>
In <em><span>IEEE</span> International Conference on Big Data, Big Data
2024, Washington DC, USA, December 15-18, 2024</em>. <span>IEEE</span>,
2024.
</div>
<div id="ref-yamada:2023:estimating-online-ratings-decision-tree"
class="csl-entry" role="listitem">
Yamada, Habuki, Nobuko Kishi, Masato Oguchi, and Miyuki Nakano. <span>“A
Method for Estimating Online Chess Game Player Ratings with Decision
Tree.”</span> In <em><span>IEEE</span> International Conference on Big
Data and Smart Computing, BigComp 2023, Jeju, Republic of Korea,
February 13-16, 2023</em>, edited by Hyeran Byun, Beng Chin Ooi, Katsumi
Tanaka, Sang-Won Lee, Zhixu Li, Akiyo Nadamoto, Giltae Song, et al.,
320–21. <span>IEEE</span>, 2023. doi:<a
href="https://doi.org/10.1109/BIGCOMP57234.2023.00066">10.1109/BIGCOMP57234.2023.00066</a>.
</div>
<div
id="ref-zaidi:2024:predicting-user-perception-move-brilliance-chess"
class="csl-entry" role="listitem">
Zaidi, Kamron, and Michael Guerzhoy. <span>“Predicting User Perception
of Move Brilliance in Chess.”</span> <em>CoRR</em> abs/2406.11895
(2024). doi:<a
href="https://doi.org/10.48550/ARXIV.2406.11895">10.48550/ARXIV.2406.11895</a>.
</div>
<div id="ref-zelek:2022:topological-data-analysis-chess"
class="csl-entry" role="listitem">
Zelek, Jakub. <span>“Topological Data Analysis in Chess.”</span>
Master's thesis, Jagiellonian University, 2022.
</div>
<div id="ref-zysko:2024:predicting-chess-puzzle-difficulty"
class="csl-entry" role="listitem">
Zyśko, Jan, Maciej Świechowski, Sebastian Stawicki, Katarzyna Jagieła,
Andrzej Janusz, and Dominik Ślęzak. <span>“<span class="nocase">IEEE Big
Data Cup 2024 Report: Predicting Chess Puzzle Difficulty at
KnowledgePit.ai</span>.”</span> In <em><span>IEEE</span> International
Conference on Big Data, Big Data 2024, Washington DC, USA, December
15-18, 2024</em>. <span>IEEE</span>, 2024.
</div>
</div>
</body>
</html>