diff --git a/docs/annotated.html b/docs/annotated.html index 2fe4b09..2bbe049 100644 --- a/docs/annotated.html +++ b/docs/annotated.html @@ -87,21 +87,28 @@
compute()
compute()
find_median_mad::compute()
compute_blocked()
compute()
Filters()
compute_metrics()
Filters()
compute_metrics()
find_median_mad::compute()
compute_blocked()
compute()
Filters()
compute_metrics()
+ scran_quality_control
+
+ Compute simple per-cell quality control metrics
+ |
+
This is the complete list of members for scran::crispr_quality_control::BlockedFilters< Float_ >, including all inherited members.
+BlockedFilters()=default | scran::crispr_quality_control::BlockedFilters< Float_ > | |
filter(size_t num, const MetricsBuffers< Sum_, Detected_, Value_, Index_ > &metrics, const Block_ *block, Output_ *output) const | scran::crispr_quality_control::BlockedFilters< Float_ > | inline |
filter(const MetricsResults< Sum_, Detected_, Value_, Index_ > &metrics, const Block_ *block, Output_ *output) const | scran::crispr_quality_control::BlockedFilters< Float_ > | inline |
filter(const MetricsResults< Sum_, Detected_, Value_, Index_ > &metrics, const Block_ *block) const | scran::crispr_quality_control::BlockedFilters< Float_ > | inline |
get_max_value() const | scran::crispr_quality_control::BlockedFilters< Float_ > | inline |
get_max_value() | scran::crispr_quality_control::BlockedFilters< Float_ > | inline |
+ scran_quality_control
+
+ Compute simple per-cell quality control metrics
+ |
+
Filter for high-quality cells using CRISPR-based metrics with blocking. + More...
+ +#include <crispr_quality_control.hpp>
+Public Member Functions | |
BlockedFilters ()=default | |
const std::vector< Float_ > & | get_max_value () const |
std::vector< Float_ > & | get_max_value () |
template<typename Sum_ , typename Detected_ , typename Value_ , typename Index_ , typename Block_ , typename Output_ > | |
void | filter (size_t num, const MetricsBuffers< Sum_, Detected_, Value_, Index_ > &metrics, const Block_ *block, Output_ *output) const |
template<typename Sum_ , typename Detected_ , typename Value_ , typename Index_ , typename Block_ , typename Output_ > | |
void | filter (const MetricsResults< Sum_, Detected_, Value_, Index_ > &metrics, const Block_ *block, Output_ *output) const |
template<typename Output_ = uint8_t, typename Sum_ = double, typename Detected_ = int, typename Value_ = double, typename Index_ = int, typename Block_ = int> | |
std::vector< Output_ > | filter (const MetricsResults< Sum_, Detected_, Value_, Index_ > &metrics, const Block_ *block) const |
Filter for high-quality cells using CRISPR-based metrics with blocking.
+Float_ | Floating-point type for filter thresholds. |
+
|
+ +default | +
Default constructor.
+ +
+
|
+ +inline | +
+
|
+ +inline | +
+
|
+ +inline | +
Sum_ | Numeric type to store the summed expression. |
Detected_ | Integer type to store the number of cells. |
Value_ | Type of matrix value. |
Index_ | Type of the matrix indices. |
Block_ | Integer type for the block assignment. |
Output_ | Boolean type to store the high quality flags. |
num | Number of cells. | |
metrics | A collection of arrays containing CRISPR-based QC metrics, filled by compute_metrics() . | |
[in] | block | Pointer to an array of length num containing block identifiers. Each identifier should correspond to the same blocks used in the constructor. |
[out] | output | Pointer to an array of length num . On output, this is truthy for cells considered to be of high quality, and false otherwise. |
+
|
+ +inline | +
Sum_ | Numeric type to store the summed expression. |
Detected_ | Integer type to store the number of cells. |
Value_ | Type of matrix value. |
Index_ | Type of the matrix indices. |
Block_ | Integer type for the block assignment. |
Output_ | Boolean type to store the high quality flags. |
metrics | CRISPR-based QC metrics computed by compute_metrics() . | |
[in] | block | Pointer to an array of length num containing block identifiers. Each identifier should correspond to the same blocks used in the constructor. |
[out] | output | Pointer to an array of length num . On output, this is truthy for cells considered to be of high quality, and false otherwise. |
+
|
+ +inline | +
Output_ | Boolean type to store the high quality flags. |
Sum_ | Numeric type to store the summed expression. |
Detected_ | Integer type to store the number of cells. |
Value_ | Type of matrix value. |
Index_ | Type of the matrix indices. |
Block_ | Integer type for the block assignment. |
metrics | CRISPR-based QC metrics computed by compute_metrics() . | |
[in] | block | Pointer to an array of length num containing block identifiers. Each identifier should correspond to the same blocks used in the constructor. |
num
, containing the high-quality calls.
+ scran_quality_control
+
+ Compute simple per-cell quality control metrics
+ |
+
This is the complete list of members for scran::crispr_quality_control::Filters< Float_ >, including all inherited members.
+filter(size_t num, const MetricsBuffers< Sum_, Detected_, Value_, Index_ > &metrics, Output_ *output) const | scran::crispr_quality_control::Filters< Float_ > | inline |
filter(const MetricsResults< Sum_, Detected_, Value_, Index_ > &metrics, Output_ *output) const | scran::crispr_quality_control::Filters< Float_ > | inline |
filter(const MetricsResults< Sum_, Detected_, Value_, Index_ > &metrics) const | scran::crispr_quality_control::Filters< Float_ > | inline |
Filters()=default | scran::crispr_quality_control::Filters< Float_ > | |
get_max_value() const | scran::crispr_quality_control::Filters< Float_ > | inline |
get_max_value() | scran::crispr_quality_control::Filters< Float_ > | inline |
+ scran_quality_control
+
+ Compute simple per-cell quality control metrics
+ |
+
Filter for high-quality cells using CRISPR-based metrics. + More...
+ +#include <crispr_quality_control.hpp>
+Public Member Functions | |
Filters ()=default | |
Float_ | get_max_value () const |
Float_ & | get_max_value () |
template<typename Sum_ , typename Detected_ , typename Value_ , typename Index_ , typename Output_ > | |
void | filter (size_t num, const MetricsBuffers< Sum_, Detected_, Value_, Index_ > &metrics, Output_ *output) const |
template<typename Sum_ , typename Detected_ , typename Value_ , typename Index_ , typename Output_ > | |
void | filter (const MetricsResults< Sum_, Detected_, Value_, Index_ > &metrics, Output_ *output) const |
template<typename Output_ = uint8_t, typename Sum_ = double, typename Detected_ = int, typename Value_ = double, typename Index_ = int> | |
std::vector< Output_ > | filter (const MetricsResults< Sum_, Detected_, Value_, Index_ > &metrics) const |
Filter for high-quality cells using CRISPR-based metrics.
+Float_ | Floating-point type for filter thresholds. |
+
|
+ +default | +
Default constructor.
+ +
+
|
+ +inline | +
+
|
+ +inline | +
+
|
+ +inline | +
Sum_ | Numeric type to store the summed expression. |
Detected_ | Integer type to store the number of cells. |
Value_ | Type of matrix value. |
Index_ | Type of the matrix indices. |
Output_ | Boolean type to store the high quality flags. |
num | Number of cells. | |
metrics | A collection of arrays containing CRISPR-based QC metrics, filled by compute_metrics() . | |
[out] | output | Pointer to an array of length num . On output, this is truthy for cells considered to be of high quality, and false otherwise. |
+
|
+ +inline | +
Sum_ | Numeric type to store the summed expression. |
Detected_ | Integer type to store the number of cells. |
Value_ | Type of matrix value. |
Index_ | Type of the matrix indices. |
Output_ | Boolean type to store the high quality flags. |
metrics | CRISPR-based QC metrics returned by compute_metrics() . | |
[out] | output | Pointer to an array of length num . On output, this is truthy for cells considered to be of high quality, and false otherwise. |
+
|
+ +inline | +
Output_ | Boolean type to store the high quality flags. |
Sum_ | Numeric type to store the summed expression. |
Detected_ | Integer type to store the number of cells. |
Value_ | Type of matrix value. |
Index_ | Type of the matrix indices. |
metrics | CRISPR-based QC metrics returned by compute_metrics() . |
num
, containing the high-quality calls.
+ scran_quality_control
+
+ Compute simple per-cell quality control metrics
+ |
+
Simple per-cell QC metrics from a CRISPR count matrix. +More...
+#include <vector>
#include <limits>
#include <algorithm>
#include <type_traits>
#include "tatami/tatami.hpp"
#include "find_median_mad.hpp"
#include "per_cell_qc_metrics.hpp"
#include "choose_filter_thresholds.hpp"
Go to the source code of this file.
++Classes | |
struct | scran::crispr_quality_control::MetricsOptions |
Options for compute_metrics() . More... | |
struct | scran::crispr_quality_control::MetricsBuffers< Sum_, Detected_, Value_, Index_ > |
Buffers for direct storage of the calculated statistics. More... | |
struct | scran::crispr_quality_control::MetricsResults< Sum_, Detected_, Value_, Index_ > |
Results of the QC metric calculations. More... | |
struct | scran::crispr_quality_control::FiltersOptions |
Options for Filters() . More... | |
class | scran::crispr_quality_control::Filters< Float_ > |
Filter for high-quality cells using CRISPR-based metrics. More... | |
class | scran::crispr_quality_control::BlockedFilters< Float_ > |
Filter for high-quality cells using CRISPR-based metrics with blocking. More... | |
+Namespaces | |
namespace | scran |
Methods for single-cell analysis. | |
namespace | scran::crispr_quality_control |
Simple per-cell QC metrics from a CRISPR count matrix. | |
+Functions | |
template<typename Value_ , typename Index_ , typename Sum_ , typename Detected_ > | |
void | scran::crispr_quality_control::compute_metrics (const tatami::Matrix< Value_, Index_ > *mat, MetricsBuffers< Sum_, Detected_, Value_, Index_ > &output, const MetricsOptions &options) |
template<typename Sum_ = double, typename Detected_ = int, typename Value_ = double, typename Index_ = int> | |
MetricsResults< Sum_, Detected_, Value_, Index_ > | scran::crispr_quality_control::compute_metrics (const tatami::Matrix< Value_, Index_ > *mat, const MetricsOptions &options) |
template<typename Float_ = double, typename Sum_ = double, typename Detected_ = int, typename Value_ = double, typename Index_ = int> | |
Filters< Float_ > | scran::crispr_quality_control::compute_filters (size_t num, const MetricsBuffers< Sum_, Detected_, Value_, Index_ > &metrics, const FiltersOptions &options) |
template<typename Float_ = double, typename Sum_ = double, typename Detected_ = int, typename Value_ = double, typename Index_ = int> | |
Filters< Float_ > | scran::crispr_quality_control::compute_filters (const MetricsResults< Sum_, Detected_, Value_, Index_ > &metrics, const FiltersOptions &options) |
template<typename Float_ = double, typename Sum_ = double, typename Detected_ = int, typename Value_ = double, typename Index_ = int, typename Block_ = int> | |
BlockedFilters< Float_ > | scran::crispr_quality_control::compute_filters_blocked (size_t num, const MetricsBuffers< Sum_, Detected_, Value_, Index_ > &metrics, const Block_ *block, const FiltersOptions &options) |
template<typename Float_ = double, typename Sum_ = double, typename Detected_ = int, typename Value_ = double, typename Index_ = int, typename Block_ = int> | |
BlockedFilters< Float_ > | scran::crispr_quality_control::compute_filters_blocked (const MetricsResults< Sum_, Detected_, Value_, Index_ > &metrics, const Block_ *block, const FiltersOptions &options) |
Simple per-cell QC metrics from a CRISPR count matrix.
+
+ scran_quality_control
+
+ Compute simple per-cell quality control metrics
+ |
+
compute()
compute()
find_median_mad::compute()
compute_blocked()
compute()
Filters()
compute_metrics()
Filters()
compute_metrics()
find_median_mad::compute()
compute_blocked()
compute()
Filters()
compute_metrics()
+ scran_quality_control
+
+ Compute simple per-cell quality control metrics
+ |
+
Simple per-cell QC metrics from a CRISPR count matrix. +More...
++Classes | |
class | BlockedFilters |
Filter for high-quality cells using CRISPR-based metrics with blocking. More... | |
class | Filters |
Filter for high-quality cells using CRISPR-based metrics. More... | |
struct | FiltersOptions |
Options for Filters() . More... | |
struct | MetricsBuffers |
Buffers for direct storage of the calculated statistics. More... | |
struct | MetricsOptions |
Options for compute_metrics() . More... | |
struct | MetricsResults |
Results of the QC metric calculations. More... | |
+Functions | |
template<typename Value_ , typename Index_ , typename Sum_ , typename Detected_ > | |
void | compute_metrics (const tatami::Matrix< Value_, Index_ > *mat, MetricsBuffers< Sum_, Detected_, Value_, Index_ > &output, const MetricsOptions &options) |
template<typename Sum_ = double, typename Detected_ = int, typename Value_ = double, typename Index_ = int> | |
MetricsResults< Sum_, Detected_, Value_, Index_ > | compute_metrics (const tatami::Matrix< Value_, Index_ > *mat, const MetricsOptions &options) |
template<typename Float_ = double, typename Sum_ = double, typename Detected_ = int, typename Value_ = double, typename Index_ = int> | |
Filters< Float_ > | compute_filters (size_t num, const MetricsBuffers< Sum_, Detected_, Value_, Index_ > &metrics, const FiltersOptions &options) |
template<typename Float_ = double, typename Sum_ = double, typename Detected_ = int, typename Value_ = double, typename Index_ = int> | |
Filters< Float_ > | compute_filters (const MetricsResults< Sum_, Detected_, Value_, Index_ > &metrics, const FiltersOptions &options) |
template<typename Float_ = double, typename Sum_ = double, typename Detected_ = int, typename Value_ = double, typename Index_ = int, typename Block_ = int> | |
BlockedFilters< Float_ > | compute_filters_blocked (size_t num, const MetricsBuffers< Sum_, Detected_, Value_, Index_ > &metrics, const Block_ *block, const FiltersOptions &options) |
template<typename Float_ = double, typename Sum_ = double, typename Detected_ = int, typename Value_ = double, typename Index_ = int, typename Block_ = int> | |
BlockedFilters< Float_ > | compute_filters_blocked (const MetricsResults< Sum_, Detected_, Value_, Index_ > &metrics, const Block_ *block, const FiltersOptions &options) |
Simple per-cell QC metrics from a CRISPR count matrix.
+Given a feature-by-cell guide count matrix, this class computes several QC metrics:
+Low-quality cells are defined as those with a low maximum count. Directly defining a threshold on the maximum count is somewhat tricky as unsuccessful transfection is not uncommon. This often results in a large subpopulation with low maximum counts, inflating the MAD and compromising the threshold calculation. Instead, we use the following approach:
+This assumes that over 50% of cells were successfully transfected with a single guide construct and have high maximum proportions. In contrast, unsuccessful transfections will be dominated by ambient contamination and have low proportions. By taking the subset above the median proportion, we remove all of the unsuccessful transfections and enrich for mostly-high-quality cells. From there, we can apply the usual outlier detection methods on the maximum count, with log-transformation to avoid a negative threshold.
+Keep in mind that the maximum proportion is only used to define the subset for threshold calculation. Once the maximum count threshold is computed, they are applied to all cells, regardless of their maximum proportions. This allows us to recover good cells that would have been filtered out by our aggressive median subset. It also ensures that we do not remove cells transfected with multiple guides - such cells are not necessarily uninteresting, e.g., for examining interaction effects, so we will err on the side of caution and leave them in.
+void scran::crispr_quality_control::compute_metrics | +( | +const tatami::Matrix< Value_, Index_ > * | +mat, | +
+ | + | MetricsBuffers< Sum_, Detected_, Value_, Index_ > & | +output, | +
+ | + | const MetricsOptions & | +options | +
+ | ) | ++ |
Compute the QC metrics from an input matrix. This is a wrapper around per_cell_qc_metrics::compute()
with some pre-configuration for CRISPR-relevant metrics.
Value_ | Type of matrix value. |
Index_ | Type of the matrix indices. |
Sum_ | Numeric type to store the summed expression. |
Detected_ | Integer type to store the number of cells. |
mat | Pointer to a feature-by-cells matrix containing counts. | |
[out] | output | MetricsBuffers object in which to store the output. |
options | Further options. |
MetricsResults< Sum_, Detected_, Value_, Index_ > scran::crispr_quality_control::compute_metrics | +( | +const tatami::Matrix< Value_, Index_ > * | +mat, | +
+ | + | const MetricsOptions & | +options | +
+ | ) | ++ |
Overload of compute_metrics()
that allocates memory for the results.
Sum_ | Numeric type to store the summed expression. |
Detected_ | Integer type to store the number of cells. |
Value_ | Type of matrix value. |
Index_ | Type of the matrix indices. |
Subset_ | Either a pointer to an array of booleans or a vector of indices. |
mat | Pointer to a feature-by-cells tatami matrix containing counts. | |
[in] | subsets | Vector of feature subsets, see per_cell_qc_metrics::compute() for details. |
options | Further options. |
PerCellRnaQcMetrics::Results
object containing the QC metrics. Subset proportions are returned depending on the subsets
. Filters< Float_ > scran::crispr_quality_control::compute_filters | +( | +size_t | +num, | +
+ | + | const MetricsBuffers< Sum_, Detected_, Value_, Index_ > & | +metrics, | +
+ | + | const FiltersOptions & | +options | +
+ | ) | ++ |
Float_ | Floating-point type for the thresholds. |
Sum_ | Numeric type to store the summed expression. |
Detected_ | Integer type to store the number of cells. |
Value_ | Type of matrix value. |
Index_ | Type of the matrix indices. |
num | Number of cells. |
metrics | A collection of arrays containing CRISPR-based QC metrics, filled by compute_metrics() . MetricsBuffers::subset_sum is assumed to contain the sums of negative control feature subsets like IgG antibodies. |
options | Further options for filtering. |
Filters | to be applied to CRISPR-based QC metrics. |
Filters< Float_ > scran::crispr_quality_control::compute_filters | +( | +const MetricsResults< Sum_, Detected_, Value_, Index_ > & | +metrics, | +
+ | + | const FiltersOptions & | +options | +
+ | ) | ++ |
Float_ | Floating-point type for the thresholds. |
Sum_ | Numeric type to store the summed expression. |
Detected_ | Integer type to store the number of cells. |
Value_ | Type of matrix value. |
Index_ | Type of the matrix indices. |
metrics | CRISPR-based QC metrics from compute_metrics() . MetricsBuffers::subset_sum is assumed to contain the sums of negative control feature subsets like IgG antibodies. |
options | Further options for filtering. |
Filters | to be applied to CRISPR-based QC metrics. |
BlockedFilters< Float_ > scran::crispr_quality_control::compute_filters_blocked | +( | +size_t | +num, | +
+ | + | const MetricsBuffers< Sum_, Detected_, Value_, Index_ > & | +metrics, | +
+ | + | const Block_ * | +block, | +
+ | + | const FiltersOptions & | +options | +
+ | ) | ++ |
Sum_ | Numeric type to store the summed expression. |
Detected_ | Integer type to store the number of cells. |
Value_ | Type of matrix value. |
Index_ | Type of the matrix indices. |
Block_ | Integer type for the block assignments. |
num | Number of cells. | |
metrics | A collection of arrays containing CRISPR-based QC metrics, filled by compute_metrics() . | |
[in] | block | Pointer to an array of length num containing block identifiers. Values should be integer IDs in where is the number of blocks. |
options | Further options for filtering. |
BlockedFilters< Float_ > scran::crispr_quality_control::compute_filters_blocked | +( | +const MetricsResults< Sum_, Detected_, Value_, Index_ > & | +metrics, | +
+ | + | const Block_ * | +block, | +
+ | + | const FiltersOptions & | +options | +
+ | ) | ++ |
Sum_ | Numeric type to store the summed expression. |
Detected_ | Integer type to store the number of cells. |
Value_ | Type of matrix value. |
Index_ | Type of the matrix indices. |
Block_ | Integer type for the block assignments. |
metrics | CRISPR-based QC metrics computed by compute_metrics() . | |
[in] | block | Pointer to an array of length num containing block identifiers. Values should be integer IDs in where is the number of blocks. |
options | Further options for filtering. |
+ scran_quality_control
+
+ Compute simple per-cell quality control metrics
+ |
+
This is the complete list of members for scran::crispr_quality_control::FiltersOptions, including all inherited members.
+max_value_num_mads | scran::crispr_quality_control::FiltersOptions |
+ scran_quality_control
+
+ Compute simple per-cell quality control metrics
+ |
+
Options for Filters()
.
+ More...
#include <crispr_quality_control.hpp>
+Public Attributes | |
double | max_value_num_mads = 3 |
Options for Filters()
.
double scran::crispr_quality_control::FiltersOptions::max_value_num_mads = 3 | +
Number of MADs below the median, to define the threshold for outliers in the maximum count. This should be non-negative.
+ +
+ scran_quality_control
+
+ Compute simple per-cell quality control metrics
+ |
+
This is the complete list of members for scran::crispr_quality_control::MetricsBuffers< Sum_, Detected_, Value_, Index_ >, including all inherited members.
+
+ scran_quality_control
+
+ Compute simple per-cell quality control metrics
+ |
+
Buffers for direct storage of the calculated statistics. + More...
+ +#include <crispr_quality_control.hpp>
+Public Attributes | |
Sum_ * | sum = NULL |
Detected_ * | detected = NULL |
Value_ * | max_value = NULL |
Index_ * | max_index = NULL |
Buffers for direct storage of the calculated statistics.
+Sum_ | Numeric type to store the summed expression. |
Detected_ | Integer type to store the number of cells. |
Value_ | Type of matrix value. |
Index_ | Type of the matrix indices. |
Sum_* scran::crispr_quality_control::MetricsBuffers< Sum_, Detected_, Value_, Index_ >::sum = NULL | +
Pointer to an array of length equal to the number of cells, see MetricsResults::sum
. This should not be NULL when calling compute_metrics()
.
Detected_* scran::crispr_quality_control::MetricsBuffers< Sum_, Detected_, Value_, Index_ >::detected = NULL | +
Pointer to an array of length equal to the number of cells, see MetricsResults::detected
. This should not be NULL when calling compute_metrics()
.
Value_* scran::crispr_quality_control::MetricsBuffers< Sum_, Detected_, Value_, Index_ >::max_value = NULL | +
Pointer to an array of length equal to the number of cells, see MetricsResults::max_value
. This should not be NULL when calling compute_metrics()
.
Index_* scran::crispr_quality_control::MetricsBuffers< Sum_, Detected_, Value_, Index_ >::max_index = NULL | +
Pointer to an array of length equal to the number of cells, see MetricsResults::max_index
. This should not be NULL when calling compute_metrics()
.
+ scran_quality_control
+
+ Compute simple per-cell quality control metrics
+ |
+
This is the complete list of members for scran::crispr_quality_control::MetricsOptions, including all inherited members.
+num_threads | scran::crispr_quality_control::MetricsOptions |
+ scran_quality_control
+
+ Compute simple per-cell quality control metrics
+ |
+
Options for compute_metrics()
.
+ More...
#include <crispr_quality_control.hpp>
+Public Attributes | |
int | num_threads = 1 |
Options for compute_metrics()
.
int scran::crispr_quality_control::MetricsOptions::num_threads = 1 | +
Number of threads to use.
+ +
+ scran_quality_control
+
+ Compute simple per-cell quality control metrics
+ |
+
This is the complete list of members for scran::crispr_quality_control::MetricsResults< Sum_, Detected_, Value_, Index_ >, including all inherited members.
+
+ scran_quality_control
+
+ Compute simple per-cell quality control metrics
+ |
+
Results of the QC metric calculations. + More...
+ +#include <crispr_quality_control.hpp>
+Public Attributes | |
std::vector< Sum_ > | sum |
std::vector< Detected_ > | detected |
std::vector< Value_ > | max_value |
std::vector< Index_ > | max_index |
Results of the QC metric calculations.
+Sum_ | Numeric type to store the summed expression. |
Detected_ | Integer type to store the number of cells. |
Value_ | Type of matrix value. |
Index_ | Type of the matrix indices. |
Meaningful instances of this object should generally be constructed by calling the compute_metrics()
function.
std::vector<Sum_> scran::crispr_quality_control::MetricsResults< Sum_, Detected_, Value_, Index_ >::sum | +
Vector of length equal to the number of cells in the dataset, containing the sum of counts for each cell.
+ +std::vector<Detected_> scran::crispr_quality_control::MetricsResults< Sum_, Detected_, Value_, Index_ >::detected | +
Vector of length equal to the number of cells in the dataset, containing the number of detected features in each cell.
+ +std::vector<Value_> scran::crispr_quality_control::MetricsResults< Sum_, Detected_, Value_, Index_ >::max_value | +
Vector of length equal to the number of cells in the dataset, containing the maximum count for each cell.
+ +std::vector<Index_> scran::crispr_quality_control::MetricsResults< Sum_, Detected_, Value_, Index_ >::max_index | +
Vector of length equal to the number of cells in the dataset, containing the row index of the guide with the maximum count for each cell.
+ +