diff --git a/docs/index.html b/docs/index.html index 6d0d497..4c81696 100644 --- a/docs/index.html +++ b/docs/index.html @@ -107,11 +107,11 @@

Quick start

opt
);
knncolle::VptreeBuilder
-
nenesub::compute
void compute(Index_ num_obs, GetNeighbors_ get_neighbors, GetIndex_ get_index, GetMaxDistance_ get_max_distance, const Options &options, std::vector< Index_ > &selected)
Definition nenesub.hpp:86
+
nenesub::compute
void compute(Index_ num_obs, GetNeighbors_ get_neighbors, GetIndex_ get_index, GetMaxDistance_ get_max_distance, const Options &options, std::vector< Index_ > &selected)
Definition nenesub.hpp:87
nenesub.hpp
Nearest-neighbors subsampling.
nenesub::Options
Options for compute().
Definition nenesub.hpp:24
nenesub::Options::num_neighbors
int num_neighbors
Definition nenesub.hpp:29
-
nenesub::Options::num_threads
int num_threads
Definition nenesub.hpp:41
+
nenesub::Options::num_threads
int num_threads
Definition nenesub.hpp:42
nenesub::Options::min_remaining
int min_remaining
Definition nenesub.hpp:35

Alternatively, we can supply a precomputed list of neighbors:

// Getting the nearest neighbors:
diff --git a/docs/namespacenenesub.html b/docs/namespacenenesub.html index c05c5b8..d4e4ce4 100644 --- a/docs/namespacenenesub.html +++ b/docs/namespacenenesub.html @@ -100,7 +100,7 @@ void compute (Index_ num_obs, GetNeighbors_ get_neighbors, GetIndex_ get_index, GetMaxDistance_ get_max_distance, const Options &options, std::vector< Index_ > &selected)   template<typename Index_ , typename Distance_ > -std::vector< Index_ > compute (const knncolle::NeighborList< Index_, Distance_ > &neighbors, const Options &options) +std::vector< Index_ > compute (const knncolle::NeighborList< Index_, Distance_ > &neighbors, const Options &options)   template<typename Dim_ , typename Index_ , typename Float_ > std::vector< Index_ > compute (const knncolle::Prebuilt< Dim_, Index_, Float_ > &prebuilt, const Options &options) @@ -206,7 +206,7 @@

std::vector< Index_ > nenesub::compute ( - const knncolle::NeighborList< Index_, Distance_ > &  + const knncolle::NeighborList< Index_, Distance_ > &  neighbors, diff --git a/docs/nenesub_8hpp.html b/docs/nenesub_8hpp.html index 0206777..f408caf 100644 --- a/docs/nenesub_8hpp.html +++ b/docs/nenesub_8hpp.html @@ -136,7 +136,7 @@ void nenesub::compute (Index_ num_obs, GetNeighbors_ get_neighbors, GetIndex_ get_index, GetMaxDistance_ get_max_distance, const Options &options, std::vector< Index_ > &selected)   template<typename Index_ , typename Distance_ > -std::vector< Index_ > nenesub::compute (const knncolle::NeighborList< Index_, Distance_ > &neighbors, const Options &options) +std::vector< Index_ > nenesub::compute (const knncolle::NeighborList< Index_, Distance_ > &neighbors, const Options &options)   template<typename Dim_ , typename Index_ , typename Float_ > std::vector< Index_ > nenesub::compute (const knncolle::Prebuilt< Dim_, Index_, Float_ > &prebuilt, const Options &options) diff --git a/docs/nenesub_8hpp_source.html b/docs/nenesub_8hpp_source.html index 794907e..f473e4e 100644 --- a/docs/nenesub_8hpp_source.html +++ b/docs/nenesub_8hpp_source.html @@ -107,199 +107,173 @@
30
35 int min_remaining = 10;
36
-
41 int num_threads = 10;
-
42};
+
42 int num_threads = 10;
+
43};

-
43
-
85template<typename Index_, class GetNeighbors_, class GetIndex_, class GetMaxDistance_>
-
-
86void compute(Index_ num_obs, GetNeighbors_ get_neighbors, GetIndex_ get_index, GetMaxDistance_ get_max_distance, const Options& options, std::vector<Index_>& selected) {
-
87 typedef decltype(get_max_distance(0)) Distance_;
-
88 struct Payload {
-
89 Payload(Index_ identity, Index_ remaining, Distance_ max_distance) : remaining(remaining), identity(identity), max_distance(max_distance) {}
-
90 Index_ remaining;
-
91 Index_ identity;
-
92 Distance_ max_distance;
-
93 };
-
94
-
95 auto cmp = [](const Payload& left, const Payload& right) -> bool {
-
96 if (left.remaining == right.remaining) {
-
97 if (left.max_distance == right.max_distance) {
-
98 return left.identity > right.identity; // smallest identities show up first.
-
99 }
-
100 return left.max_distance > right.max_distance; // smallest distances show up first.
-
101 }
-
102 return left.remaining < right.remaining; // largest remaining show up first.
-
103 };
-
104 std::priority_queue<Payload, std::vector<Payload>, decltype(cmp)> store(
-
105 cmp,
-
106 [&]{
-
107 std::vector<Payload> container;
-
108 container.reserve(num_obs);
-
109 return container;
-
110 }()
-
111 );
-
112
-
113 std::vector<std::vector<Index_> > reverse_map(num_obs);
-
114 std::vector<Index_> remaining(num_obs);
-
115 for (Index_ c = 0; c < num_obs; ++c) {
-
116 const auto& neighbors = get_neighbors(c);
-
117 Index_ nneighbors = neighbors.size();
-
118
-
119 if (nneighbors) { // protect get_max_distance just in case there are no neighbors.
-
120 store.emplace(c, nneighbors, get_max_distance(c));
-
121 for (Index_ n = 0; n < nneighbors; ++n) {
-
122 reverse_map[get_index(neighbors, n)].push_back(c);
-
123 }
-
124 remaining[c] = nneighbors;
-
125 }
-
126 }
-
127
-
128 selected.clear();
-
129 std::vector<uint8_t> tainted(num_obs);
-
130 Index_ min_remaining = options.min_remaining;
-
131 while (!store.empty()) {
-
132 auto payload = store.top();
-
133 store.pop();
-
134 if (tainted[payload.identity]) {
-
135 continue;
-
136 }
-
137
-
138 const auto& neighbors = get_neighbors(payload.identity);
-
139 Index_ new_remaining = remaining[payload.identity];
-
140
-
141 if (new_remaining >= min_remaining) {
-
142 payload.remaining = new_remaining;
-
143 if (!store.empty() && cmp(payload, store.top())) {
-
144 store.push(payload);
-
145 } else {
-
146 selected.push_back(payload.identity);
-
147 tainted[payload.identity] = 1;
-
148 for (auto x : reverse_map[payload.identity]) {
-
149 --remaining[x];
-
150 }
-
151
-
152 Index_ nneighbors = neighbors.size();
-
153 for (Index_ n = 0; n < nneighbors; ++n) {
-
154 auto current = get_index(neighbors, n);
-
155 tainted[current] = 1;
-
156 for (auto x : reverse_map[current]) {
-
157 --remaining[x];
-
158 }
-
159 }
-
160 }
-
161 }
-
162 }
-
163
-
164 std::sort(selected.begin(), selected.end());
-
165}
+
44
+
86template<typename Index_, class GetNeighbors_, class GetIndex_, class GetMaxDistance_>
+
+
87void compute(Index_ num_obs, GetNeighbors_ get_neighbors, GetIndex_ get_index, GetMaxDistance_ get_max_distance, const Options& options, std::vector<Index_>& selected) {
+
88 typedef decltype(get_max_distance(0)) Distance_;
+
89 struct Payload {
+
90 Payload(Index_ identity, Index_ remaining, Distance_ max_distance) : remaining(remaining), identity(identity), max_distance(max_distance) {}
+
91 Index_ remaining;
+
92 Index_ identity;
+
93 Distance_ max_distance;
+
94 };
+
95
+
96 auto cmp = [](const Payload& left, const Payload& right) -> bool {
+
97 if (left.remaining == right.remaining) {
+
98 if (left.max_distance == right.max_distance) {
+
99 return left.identity > right.identity; // smallest identities show up first.
+
100 }
+
101 return left.max_distance > right.max_distance; // smallest distances show up first.
+
102 }
+
103 return left.remaining < right.remaining; // largest remaining show up first.
+
104 };
+
105 std::priority_queue<Payload, std::vector<Payload>, decltype(cmp)> store(
+
106 cmp,
+
107 [&]{
+
108 std::vector<Payload> container;
+
109 container.reserve(num_obs);
+
110 return container;
+
111 }()
+
112 );
+
113
+
114 std::vector<std::vector<Index_> > reverse_map(num_obs);
+
115 std::vector<Index_> remaining(num_obs);
+
116 for (Index_ c = 0; c < num_obs; ++c) {
+
117 const auto& neighbors = get_neighbors(c);
+
118 Index_ nneighbors = neighbors.size();
+
119
+
120 if (nneighbors) { // protect get_max_distance just in case there are no neighbors.
+
121 store.emplace(c, nneighbors, get_max_distance(c));
+
122 for (Index_ n = 0; n < nneighbors; ++n) {
+
123 reverse_map[get_index(neighbors, n)].push_back(c);
+
124 }
+
125 remaining[c] = nneighbors;
+
126 }
+
127 }
+
128
+
129 selected.clear();
+
130 std::vector<uint8_t> tainted(num_obs);
+
131 Index_ min_remaining = options.min_remaining;
+
132 while (!store.empty()) {
+
133 auto payload = store.top();
+
134 store.pop();
+
135 if (tainted[payload.identity]) {
+
136 continue;
+
137 }
+
138
+
139 const auto& neighbors = get_neighbors(payload.identity);
+
140 Index_ new_remaining = remaining[payload.identity];
+
141
+
142 if (new_remaining >= min_remaining) {
+
143 payload.remaining = new_remaining;
+
144 if (!store.empty() && cmp(payload, store.top())) {
+
145 store.push(payload);
+
146 } else {
+
147 selected.push_back(payload.identity);
+
148 tainted[payload.identity] = 1;
+
149 for (auto x : reverse_map[payload.identity]) {
+
150 --remaining[x];
+
151 }
+
152
+
153 Index_ nneighbors = neighbors.size();
+
154 for (Index_ n = 0; n < nneighbors; ++n) {
+
155 auto current = get_index(neighbors, n);
+
156 tainted[current] = 1;
+
157 for (auto x : reverse_map[current]) {
+
158 --remaining[x];
+
159 }
+
160 }
+
161 }
+
162 }
+
163 }
+
164
+
165 std::sort(selected.begin(), selected.end());
+
166}
-
166
-
182template<typename Index_, typename Distance_>
-
-
183std::vector<Index_> compute(const knncolle::NeighborList<Index_, Distance_>& neighbors, const Options& options) {
-
184 std::vector<Index_> output;
-
185 compute(
-
186 static_cast<Index_>(neighbors.size()),
-
187 [&](size_t i) -> const std::vector<Index_>& { return neighbors[i].first; },
-
188 [](const std::vector<Index_>& x, Index_ n) -> Index_ { return x[n]; },
-
189 [&](size_t i) -> Distance_ { return neighbors[i].second.back(); },
-
190 options,
-
191 output
-
192 );
-
193 return output;
-
194}
+
167
+
183template<typename Index_, typename Distance_>
+
+
184std::vector<Index_> compute(const knncolle::NeighborList<Index_, Distance_>& neighbors, const Options& options) {
+
185 std::vector<Index_> output;
+
186 compute(
+
187 static_cast<Index_>(neighbors.size()),
+
188 [&](size_t i) -> const auto& { return neighbors[i]; },
+
189 [](const auto& x, Index_ n) -> Index_ { return x[n].first; },
+
190 [&](size_t i) -> Distance_ { return neighbors[i].back().second; },
+
191 options,
+
192 output
+
193 );
+
194 return output;
+
195}
-
195
-
208template<typename Dim_, typename Index_, typename Float_>
-
-
209std::vector<Index_> compute(const knncolle::Prebuilt<Dim_, Index_, Float_>& prebuilt, const Options& options) {
-
210 int k = options.num_neighbors;
-
211 if (k < options.min_remaining) {
-
212 throw std::runtime_error("number of neighbors is less than 'min_remaining'");
-
213 }
-
214
-
215 Index_ nobs = prebuilt.num_observations();
-
216 std::vector<std::vector<Index_> > nn_indices(nobs);
-
217 std::vector<Float_> max_distance(nobs);
-
218
-
219#ifndef KNNCOLLE_CUSTOM_PARALLEL
-
220#ifdef _OPENMP
-
221 #pragma omp parallel num_threads(options.num_threads)
-
222 {
-
223 auto sptr = prebuilt.initialize();
-
224 std::vector<Float_> nn_distances;
-
225 #pragma omp for
-
226 for (Index_ i = 0; i < nobs; ++i) {
-
227#else
-
228 auto sptr = prebuilt.initialize();
-
229 std::vector<Float_> nn_distances;
-
230 for (Index_ i = 0; i < nobs; ++i) {
-
231#endif
-
232#else
-
233 KNNCOLLE_CUSTOM_PARALLEL(nobs, options.num_threads, [&](Index_ start, Index_ length) -> void {
-
234 auto sptr = prebuilt.initialize();
-
235 std::vector<Float_> nn_distances;
-
236 for (Index_ i = start, end = start + length; i < end; ++i) {
-
237#endif
-
238
-
239 sptr->search(i, k, &(nn_indices[i]), &nn_distances);
-
240 max_distance[i] = (k ? 0 : nn_distances.back());
-
241
-
242#ifndef KNNCOLLE_CUSTOM_PARALLEL
-
243#ifdef _OPENMP
-
244 }
-
245 }
-
246#else
-
247 }
-
248#endif
-
249#else
-
250 }
-
251 });
-
252#endif
-
253
-
254 std::vector<Index_> output;
-
255 compute(
-
256 nobs,
-
257 [&](size_t i) -> const std::vector<Index_>& { return nn_indices[i]; },
-
258 [](const std::vector<Index_>& x, Index_ n) -> Index_ { return x[n]; },
-
259 [&](size_t i) -> Float_ { return max_distance[i]; },
-
260 options,
-
261 output
-
262 );
-
263 return output;
-
264}
+
196
+
209template<typename Dim_, typename Index_, typename Float_>
+
+
210std::vector<Index_> compute(const knncolle::Prebuilt<Dim_, Index_, Float_>& prebuilt, const Options& options) {
+
211 int k = options.num_neighbors;
+
212 if (k < options.min_remaining) {
+
213 throw std::runtime_error("number of neighbors is less than 'min_remaining'");
+
214 }
+
215
+
216 Index_ nobs = prebuilt.num_observations();
+
217 std::vector<std::vector<Index_> > nn_indices(nobs);
+
218 std::vector<Float_> max_distance(nobs);
+
219
+
220 knncolle::parallelize(options.num_threads, nobs, [&](int, Index_ start, Index_ length) -> void {
+
221 auto sptr = prebuilt.initialize();
+
222 std::vector<Float_> nn_distances;
+
223 for (Index_ i = start, end = start + length; i < end; ++i) {
+
224 sptr->search(i, k, &(nn_indices[i]), &nn_distances);
+
225 max_distance[i] = (k ? 0 : nn_distances.back());
+
226 }
+
227 });
+
228
+
229 std::vector<Index_> output;
+
230 compute(
+
231 nobs,
+
232 [&](size_t i) -> const std::vector<Index_>& { return nn_indices[i]; },
+
233 [](const std::vector<Index_>& x, Index_ n) -> Index_ { return x[n]; },
+
234 [&](size_t i) -> Float_ { return max_distance[i]; },
+
235 options,
+
236 output
+
237 );
+
238 return output;
+
239}
-
265
-
282template<typename Dim_, typename Index_, typename Value_, typename Float_>
-
-
283std::vector<Index_> compute(
-
284 Dim_ num_dims,
-
285 Index_ num_obs,
-
286 const Value_* data,
- -
288 const Options& options)
-
289{
-
290 auto prebuilt = knn_method.build_unique(knncolle::SimpleMatrix<Dim_, Index_, Value_>(num_dims, num_obs, data));
-
291 return compute(*prebuilt, options);
-
292}
+
240
+
257template<typename Dim_, typename Index_, typename Value_, typename Float_>
+
+
258std::vector<Index_> compute(
+
259 Dim_ num_dims,
+
260 Index_ num_obs,
+
261 const Value_* data,
+ +
263 const Options& options)
+
264{
+
265 auto prebuilt = knn_method.build_unique(knncolle::SimpleMatrix<Dim_, Index_, Value_>(num_dims, num_obs, data));
+
266 return compute(*prebuilt, options);
+
267}
-
293
-
294}
-
295
-
296#endif
+
268
+
269}
+
270
+
271#endif
virtual Index_ num_observations() const=0
-
virtual std::unique_ptr< Searcher< Index_, Float_ > > initialize() const=0
-
std::vector< std::pair< std::vector< Index_ >, std::vector< Float_ > > > NeighborList
+
std::vector< std::vector< std::pair< Index_, Float_ > > > NeighborList
+
void parallelize(int num_workers, Task_ num_tasks, Run_ run_task_range)
Nearest-neighbors subsampling.
-
void compute(Index_ num_obs, GetNeighbors_ get_neighbors, GetIndex_ get_index, GetMaxDistance_ get_max_distance, const Options &options, std::vector< Index_ > &selected)
Definition nenesub.hpp:86
+
void compute(Index_ num_obs, GetNeighbors_ get_neighbors, GetIndex_ get_index, GetMaxDistance_ get_max_distance, const Options &options, std::vector< Index_ > &selected)
Definition nenesub.hpp:87
Options for compute().
Definition nenesub.hpp:24
int num_neighbors
Definition nenesub.hpp:29
-
int num_threads
Definition nenesub.hpp:41
+
int num_threads
Definition nenesub.hpp:42
int min_remaining
Definition nenesub.hpp:35
diff --git a/docs/search/all_0.js b/docs/search/all_0.js index 0407c48..8249621 100644 --- a/docs/search/all_0.js +++ b/docs/search/all_0.js @@ -4,7 +4,7 @@ var searchData= ['bruteforcebuilder_1',['BruteforceBuilder',['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforceBuilder.html',1,'knncolle']]], ['bruteforceprebuilt_2',['BruteforcePrebuilt',['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforcePrebuilt.html',1,'knncolle']]], ['bruteforcesearcher_3',['BruteforceSearcher',['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforceSearcher.html',1,'knncolle']]], - ['build_5fraw_4',['build_raw',['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforceBuilder.html#a491f8b75d24452615248da7c236b7759',1,'knncolle::BruteforceBuilder::build_raw()'],['https://knncolle.github.io/knncolle/classknncolle_1_1Builder.html#aa1c84ac7bd4120f5539be1320b74f5f4',1,'knncolle::Builder::build_raw()'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnBuilder.html#aafe27a514becc203a33ec54584bf6562',1,'knncolle::KmknnBuilder::build_raw()'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreeBuilder.html#a0c25ca5b2d7a812032d7cf1d42e3ad3a',1,'knncolle::VptreeBuilder::build_raw()']]], + ['build_5fraw_4',['build_raw',['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforceBuilder.html#a491f8b75d24452615248da7c236b7759',1,'knncolle::BruteforceBuilder::build_raw()'],['https://knncolle.github.io/knncolle/classknncolle_1_1Builder.html#aa1c84ac7bd4120f5539be1320b74f5f4',1,'knncolle::Builder::build_raw()'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnBuilder.html#aafe27a514becc203a33ec54584bf6562',1,'knncolle::KmknnBuilder::build_raw()'],['https://knncolle.github.io/knncolle/classknncolle_1_1L2NormalizedBuilder.html#a9747f9c49d62c8d0c47c017586e0b297',1,'knncolle::L2NormalizedBuilder::build_raw()'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreeBuilder.html#a0c25ca5b2d7a812032d7cf1d42e3ad3a',1,'knncolle::VptreeBuilder::build_raw()']]], ['build_5fshared_5',['build_shared',['https://knncolle.github.io/knncolle/classknncolle_1_1Builder.html#afe899198735bd5f9d1921283fa65ff3a',1,'knncolle::Builder']]], ['build_5funique_6',['build_unique',['https://knncolle.github.io/knncolle/classknncolle_1_1Builder.html#afeda432debae999f988f32f147055251',1,'knncolle::Builder']]], ['builder_7',['Builder',['https://knncolle.github.io/knncolle/classknncolle_1_1Builder.html',1,'knncolle']]], diff --git a/docs/search/all_10.js b/docs/search/all_10.js new file mode 100644 index 0000000..b0ca348 --- /dev/null +++ b/docs/search/all_10.js @@ -0,0 +1,4 @@ +var searchData= +[ + ['workspace_0',['Workspace',['https://knncolle.github.io/knncolle/structknncolle_1_1MockMatrix_1_1Workspace.html',1,'knncolle::MockMatrix']]] +]; diff --git a/docs/search/all_6.js b/docs/search/all_6.js index c37a649..f1523cf 100644 --- a/docs/search/all_6.js +++ b/docs/search/all_6.js @@ -1,6 +1,6 @@ var searchData= [ ['index_5ftype_0',['index_type',['https://knncolle.github.io/knncolle/classknncolle_1_1MockMatrix.html#ade1c40b06e09d623e2b83a9bd6487479',1,'knncolle::MockMatrix']]], - ['initialize_1',['initialize',['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforcePrebuilt.html#a591b94e2c5f4a0fe404cf89dcc20d0de',1,'knncolle::BruteforcePrebuilt::initialize()'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnPrebuilt.html#a361ec0511a7cd79ce3f318560a8349cf',1,'knncolle::KmknnPrebuilt::initialize()'],['https://knncolle.github.io/knncolle/classknncolle_1_1Prebuilt.html#a71b757b154aa2713d732afd2d9444bb9',1,'knncolle::Prebuilt::initialize()'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreePrebuilt.html#a583eeead36f94b77d5ceb46c47fd8aa3',1,'knncolle::VptreePrebuilt::initialize()']]], + ['initialize_1',['initialize',['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforcePrebuilt.html#a591b94e2c5f4a0fe404cf89dcc20d0de',1,'knncolle::BruteforcePrebuilt::initialize()'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnPrebuilt.html#a361ec0511a7cd79ce3f318560a8349cf',1,'knncolle::KmknnPrebuilt::initialize()'],['https://knncolle.github.io/knncolle/classknncolle_1_1L2NormalizedPrebuilt.html#a0879ea8c8512d04a2f73fb7afd7eae56',1,'knncolle::L2NormalizedPrebuilt::initialize()'],['https://knncolle.github.io/knncolle/classknncolle_1_1Prebuilt.html#a71b757b154aa2713d732afd2d9444bb9',1,'knncolle::Prebuilt::initialize()'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreePrebuilt.html#a583eeead36f94b77d5ceb46c47fd8aa3',1,'knncolle::VptreePrebuilt::initialize()']]], ['initialize_5falgorithm_2',['initialize_algorithm',['https://knncolle.github.io/knncolle/structknncolle_1_1KmknnOptions.html#a01ab1d6e283fa8945723f33942e310c0',1,'knncolle::KmknnOptions']]] ]; diff --git a/docs/search/all_8.js b/docs/search/all_8.js index 3668c47..3e04de7 100644 --- a/docs/search/all_8.js +++ b/docs/search/all_8.js @@ -1,8 +1,8 @@ var searchData= [ - ['manhattandistance_0',['ManhattanDistance',['https://knncolle.github.io/knncolle/structknncolle_1_1ManhattanDistance.html',1,'knncolle']]], - ['min_5fremaining_1',['min_remaining',['../structnenesub_1_1Options.html#aca8e07989de02b7fc173848333a93695',1,'nenesub::Options']]], - ['mockdistance_2',['MockDistance',['https://knncolle.github.io/knncolle/structknncolle_1_1MockDistance.html',1,'knncolle']]], - ['mockmatrix_3',['MockMatrix',['https://knncolle.github.io/knncolle/classknncolle_1_1MockMatrix.html',1,'knncolle']]], - ['mockmatrix_2ehpp_4',['MockMatrix.hpp',['https://knncolle.github.io/knncolle/MockMatrix_8hpp.html',1,'']]] + ['l2normalized_2ehpp_0',['L2Normalized.hpp',['https://knncolle.github.io/knncolle/L2Normalized_8hpp.html',1,'']]], + ['l2normalizedbuilder_1',['l2normalizedbuilder',['https://knncolle.github.io/knncolle/classknncolle_1_1L2NormalizedBuilder.html',1,'knncolle::L2NormalizedBuilder< class Matrix_, typename Float_ >'],['https://knncolle.github.io/knncolle/classknncolle_1_1L2NormalizedBuilder.html#a7f3702fbbf54bbbaceb925aa2936bd45',1,'knncolle::L2NormalizedBuilder::L2NormalizedBuilder(std::unique_ptr< Builder< L2NormalizedMatrix< Matrix_ >, Float_ > > builder)'],['https://knncolle.github.io/knncolle/classknncolle_1_1L2NormalizedBuilder.html#a16df727021e97c341b7ef957eb79dd23',1,'knncolle::L2NormalizedBuilder::L2NormalizedBuilder(Builder< L2NormalizedMatrix< Matrix_ >, Float_ > *builder)']]], + ['l2normalizedmatrix_2',['L2NormalizedMatrix',['https://knncolle.github.io/knncolle/classknncolle_1_1L2NormalizedMatrix.html',1,'knncolle']]], + ['l2normalizedprebuilt_3',['l2normalizedprebuilt',['https://knncolle.github.io/knncolle/classknncolle_1_1L2NormalizedPrebuilt.html',1,'knncolle::L2NormalizedPrebuilt< typename Dim_, typename Index_, typename Float_ >'],['https://knncolle.github.io/knncolle/classknncolle_1_1L2NormalizedPrebuilt.html#a43c889080f754e44c6085cc10a46f32b',1,'knncolle::L2NormalizedPrebuilt::L2NormalizedPrebuilt()']]], + ['l2normalizedsearcher_4',['l2normalizedsearcher',['https://knncolle.github.io/knncolle/classknncolle_1_1L2NormalizedSearcher.html',1,'knncolle::L2NormalizedSearcher< typename Index_, typename Float_ >'],['https://knncolle.github.io/knncolle/classknncolle_1_1L2NormalizedSearcher.html#ad97e99e0fd85202cce0357333a78a2a4',1,'knncolle::L2NormalizedSearcher::L2NormalizedSearcher()']]] ]; diff --git a/docs/search/all_9.js b/docs/search/all_9.js index 08463f5..3668c47 100644 --- a/docs/search/all_9.js +++ b/docs/search/all_9.js @@ -1,13 +1,8 @@ var searchData= [ - ['nearest_20neighbors_20subsampling_0',['Nearest-neighbors subsampling',['../index.html',1,'']]], - ['neighborlist_1',['NeighborList',['https://knncolle.github.io/knncolle/namespaceknncolle.html#a3faddeb80b10f56cb982a4e83ad3aca9',1,'knncolle']]], - ['neighbors_20subsampling_2',['Nearest-neighbors subsampling',['../index.html',1,'']]], - ['nenesub_3',['nenesub',['../namespacenenesub.html',1,'']]], - ['nenesub_2ehpp_4',['nenesub.hpp',['../nenesub_8hpp.html',1,'']]], - ['normalize_5',['normalize',['https://knncolle.github.io/knncolle/structknncolle_1_1MockDistance.html#acf139f39a2c07856820442a8e12701cd',1,'knncolle::MockDistance::normalize()'],['https://knncolle.github.io/knncolle/structknncolle_1_1ManhattanDistance.html#a4dea393df5acd96968fa6476ee6d6ad0',1,'knncolle::ManhattanDistance::normalize()'],['https://knncolle.github.io/knncolle/structknncolle_1_1EuclideanDistance.html#a79fdf3c2dde43bd0e9103486b8a4839b',1,'knncolle::EuclideanDistance::normalize()']]], - ['num_5fdimensions_6',['num_dimensions',['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforcePrebuilt.html#a8623475e148b181f29623cf4b3c7a5f4',1,'knncolle::BruteforcePrebuilt::num_dimensions()'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnPrebuilt.html#adad9d751074e36037ea3e20bd20a50c3',1,'knncolle::KmknnPrebuilt::num_dimensions()'],['https://knncolle.github.io/knncolle/classknncolle_1_1MockMatrix.html#accf6389be4fd0d9a9f0c6ed3c73d30d6',1,'knncolle::MockMatrix::num_dimensions()'],['https://knncolle.github.io/knncolle/classknncolle_1_1Prebuilt.html#a99412339915bc2ff0a6cd58ef4012d74',1,'knncolle::Prebuilt::num_dimensions()'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreePrebuilt.html#aa3945048112b06bcbf9a4039f55581fe',1,'knncolle::VptreePrebuilt::num_dimensions()']]], - ['num_5fneighbors_7',['num_neighbors',['../structnenesub_1_1Options.html#a5df6fdc7c00d5560cf24e707c6d2a318',1,'nenesub::Options']]], - ['num_5fobservations_8',['num_observations',['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforcePrebuilt.html#a532a8a4fbe68d0df15f4618fd5d82983',1,'knncolle::BruteforcePrebuilt::num_observations()'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnPrebuilt.html#ac47cf8cff93bcb0c14a7312b9f1bf812',1,'knncolle::KmknnPrebuilt::num_observations()'],['https://knncolle.github.io/knncolle/classknncolle_1_1MockMatrix.html#ac3af3babb476ddf204a94e77a7b2196a',1,'knncolle::MockMatrix::num_observations()'],['https://knncolle.github.io/knncolle/classknncolle_1_1Prebuilt.html#a6dd837344267241384206661df28e1ab',1,'knncolle::Prebuilt::num_observations()'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreePrebuilt.html#a3bee679a176256a7f7247e636c8c26af',1,'knncolle::VptreePrebuilt::num_observations()']]], - ['num_5fthreads_9',['num_threads',['../structnenesub_1_1Options.html#a97589522562c135c803914e6e4abdecc',1,'nenesub::Options']]] + ['manhattandistance_0',['ManhattanDistance',['https://knncolle.github.io/knncolle/structknncolle_1_1ManhattanDistance.html',1,'knncolle']]], + ['min_5fremaining_1',['min_remaining',['../structnenesub_1_1Options.html#aca8e07989de02b7fc173848333a93695',1,'nenesub::Options']]], + ['mockdistance_2',['MockDistance',['https://knncolle.github.io/knncolle/structknncolle_1_1MockDistance.html',1,'knncolle']]], + ['mockmatrix_3',['MockMatrix',['https://knncolle.github.io/knncolle/classknncolle_1_1MockMatrix.html',1,'knncolle']]], + ['mockmatrix_2ehpp_4',['MockMatrix.hpp',['https://knncolle.github.io/knncolle/MockMatrix_8hpp.html',1,'']]] ]; diff --git a/docs/search/all_a.js b/docs/search/all_a.js index b7b6b10..5938dcb 100644 --- a/docs/search/all_a.js +++ b/docs/search/all_a.js @@ -1,4 +1,13 @@ var searchData= [ - ['options_0',['options',['../structnenesub_1_1Options.html',1,'nenesub::Options'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnBuilder.html#ab70f49036aa3f59e67e84eb9bdae5c2c',1,'knncolle::KmknnBuilder::Options']]] + ['nearest_20neighbors_20subsampling_0',['Nearest-neighbors subsampling',['../index.html',1,'']]], + ['neighborlist_1',['NeighborList',['https://knncolle.github.io/knncolle/namespaceknncolle.html#a25d7a950cf7745b99bc834b79e064c09',1,'knncolle']]], + ['neighbors_20subsampling_2',['Nearest-neighbors subsampling',['../index.html',1,'']]], + ['nenesub_3',['nenesub',['../namespacenenesub.html',1,'']]], + ['nenesub_2ehpp_4',['nenesub.hpp',['../nenesub_8hpp.html',1,'']]], + ['normalize_5',['normalize',['https://knncolle.github.io/knncolle/structknncolle_1_1MockDistance.html#acf139f39a2c07856820442a8e12701cd',1,'knncolle::MockDistance::normalize()'],['https://knncolle.github.io/knncolle/structknncolle_1_1ManhattanDistance.html#a4dea393df5acd96968fa6476ee6d6ad0',1,'knncolle::ManhattanDistance::normalize()'],['https://knncolle.github.io/knncolle/structknncolle_1_1EuclideanDistance.html#a79fdf3c2dde43bd0e9103486b8a4839b',1,'knncolle::EuclideanDistance::normalize()']]], + ['num_5fdimensions_6',['num_dimensions',['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforcePrebuilt.html#a8623475e148b181f29623cf4b3c7a5f4',1,'knncolle::BruteforcePrebuilt::num_dimensions()'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnPrebuilt.html#adad9d751074e36037ea3e20bd20a50c3',1,'knncolle::KmknnPrebuilt::num_dimensions()'],['https://knncolle.github.io/knncolle/classknncolle_1_1MockMatrix.html#accf6389be4fd0d9a9f0c6ed3c73d30d6',1,'knncolle::MockMatrix::num_dimensions()'],['https://knncolle.github.io/knncolle/classknncolle_1_1Prebuilt.html#a99412339915bc2ff0a6cd58ef4012d74',1,'knncolle::Prebuilt::num_dimensions()'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreePrebuilt.html#aa3945048112b06bcbf9a4039f55581fe',1,'knncolle::VptreePrebuilt::num_dimensions()']]], + ['num_5fneighbors_7',['num_neighbors',['../structnenesub_1_1Options.html#a5df6fdc7c00d5560cf24e707c6d2a318',1,'nenesub::Options']]], + ['num_5fobservations_8',['num_observations',['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforcePrebuilt.html#a532a8a4fbe68d0df15f4618fd5d82983',1,'knncolle::BruteforcePrebuilt::num_observations()'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnPrebuilt.html#ac47cf8cff93bcb0c14a7312b9f1bf812',1,'knncolle::KmknnPrebuilt::num_observations()'],['https://knncolle.github.io/knncolle/classknncolle_1_1MockMatrix.html#ac3af3babb476ddf204a94e77a7b2196a',1,'knncolle::MockMatrix::num_observations()'],['https://knncolle.github.io/knncolle/classknncolle_1_1Prebuilt.html#a6dd837344267241384206661df28e1ab',1,'knncolle::Prebuilt::num_observations()'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreePrebuilt.html#a3bee679a176256a7f7247e636c8c26af',1,'knncolle::VptreePrebuilt::num_observations()']]], + ['num_5fthreads_9',['num_threads',['../structnenesub_1_1Options.html#a97589522562c135c803914e6e4abdecc',1,'nenesub::Options']]] ]; diff --git a/docs/search/all_b.js b/docs/search/all_b.js index b591615..b7b6b10 100644 --- a/docs/search/all_b.js +++ b/docs/search/all_b.js @@ -1,6 +1,4 @@ var searchData= [ - ['power_0',['power',['https://knncolle.github.io/knncolle/structknncolle_1_1KmknnOptions.html#ad46d8aa236754eb65ea9983d355c3280',1,'knncolle::KmknnOptions']]], - ['prebuilt_1',['Prebuilt',['https://knncolle.github.io/knncolle/classknncolle_1_1Prebuilt.html',1,'knncolle']]], - ['prebuilt_2ehpp_2',['Prebuilt.hpp',['https://knncolle.github.io/knncolle/Prebuilt_8hpp.html',1,'']]] + ['options_0',['options',['../structnenesub_1_1Options.html',1,'nenesub::Options'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnBuilder.html#ab70f49036aa3f59e67e84eb9bdae5c2c',1,'knncolle::KmknnBuilder::Options']]] ]; diff --git a/docs/search/all_c.js b/docs/search/all_c.js index a9cde79..15bcd51 100644 --- a/docs/search/all_c.js +++ b/docs/search/all_c.js @@ -1,5 +1,7 @@ var searchData= [ - ['raw_5fdistance_0',['raw_distance',['https://knncolle.github.io/knncolle/structknncolle_1_1EuclideanDistance.html#a0d6936a53ba4ed0e0ca33c9ac2515d06',1,'knncolle::EuclideanDistance::raw_distance()'],['https://knncolle.github.io/knncolle/structknncolle_1_1ManhattanDistance.html#ac782b1cfdb76e144a3d84d674e661456',1,'knncolle::ManhattanDistance::raw_distance()'],['https://knncolle.github.io/knncolle/structknncolle_1_1MockDistance.html#a7cfc77c0fd9806f9030a617404a5f954',1,'knncolle::MockDistance::raw_distance()']]], - ['refine_5falgorithm_1',['refine_algorithm',['https://knncolle.github.io/knncolle/structknncolle_1_1KmknnOptions.html#adf03e5a3046a1da5cacff93d37975ff8',1,'knncolle::KmknnOptions']]] + ['parallelize_0',['parallelize',['https://knncolle.github.io/knncolle/namespaceknncolle.html#a5faf80c12bbfbab853c41f6d001fe073',1,'knncolle']]], + ['power_1',['power',['https://knncolle.github.io/knncolle/structknncolle_1_1KmknnOptions.html#ad46d8aa236754eb65ea9983d355c3280',1,'knncolle::KmknnOptions']]], + ['prebuilt_2',['Prebuilt',['https://knncolle.github.io/knncolle/classknncolle_1_1Prebuilt.html',1,'knncolle']]], + ['prebuilt_2ehpp_3',['Prebuilt.hpp',['https://knncolle.github.io/knncolle/Prebuilt_8hpp.html',1,'']]] ]; diff --git a/docs/search/all_d.js b/docs/search/all_d.js index b11363a..a9cde79 100644 --- a/docs/search/all_d.js +++ b/docs/search/all_d.js @@ -1,9 +1,5 @@ var searchData= [ - ['search_0',['search',['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforceSearcher.html#a5250b4ce7176fbe1a60783bc4dd324f0',1,'knncolle::BruteforceSearcher::search(Index_ i, Index_ k, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforceSearcher.html#afef023240ea7ddcc28561c0f71c54601',1,'knncolle::BruteforceSearcher::search(const Float_ *query, Index_ k, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnSearcher.html#a3db2397321aec4f6e89774f22f71c482',1,'knncolle::KmknnSearcher::search(Index_ i, Index_ k, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnSearcher.html#aa7c1f3e8224d260adfec2625216e90c6',1,'knncolle::KmknnSearcher::search(const Float_ *query, Index_ k, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1Searcher.html#a6ad140ee93a7af57fdb722c16476aee4',1,'knncolle::Searcher::search(Index_ i, Index_ k, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)=0'],['https://knncolle.github.io/knncolle/classknncolle_1_1Searcher.html#a9f4bac73a3dd958d1f09e1093bd1cf01',1,'knncolle::Searcher::search(const Float_ *query, Index_ k, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)=0'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreeSearcher.html#a3b2a7c230cfdf88cf1fa42896ca5909a',1,'knncolle::VptreeSearcher::search(Index_ i, Index_ k, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreeSearcher.html#ac86dd5bf34f233d04502e789224eb44a',1,'knncolle::VptreeSearcher::search(const Float_ *query, Index_ k, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)']]], - ['search_5fall_1',['search_all',['https://knncolle.github.io/knncolle/classknncolle_1_1VptreeSearcher.html#a51594cb79d1ea89aea64359690e5301e',1,'knncolle::VptreeSearcher::search_all(const Float_ *query, Float_ d, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreeSearcher.html#ab1cdb331dcde946b831446f219979d3a',1,'knncolle::VptreeSearcher::search_all(Index_ i, Float_ d, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1Searcher.html#adbe92827aebee347f57257591712d093',1,'knncolle::Searcher::search_all(const Float_ *query, Float_ distance, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1Searcher.html#ae7fb8a8e436303c5917f3717393cf056',1,'knncolle::Searcher::search_all(Index_ i, Float_ distance, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnSearcher.html#a268f3f69058d2d5a1d0514d37ec5f97c',1,'knncolle::KmknnSearcher::search_all(const Float_ *query, Float_ d, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnSearcher.html#ac31860ebca446559f97c8b07f4c37efa',1,'knncolle::KmknnSearcher::search_all(Index_ i, Float_ d, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforceSearcher.html#aae68bf23ca7d80dbf0a6138cb8cb6d15',1,'knncolle::BruteforceSearcher::search_all(const Float_ *query, Float_ d, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforceSearcher.html#a1164e4e1e627b716f9db91e8931872e9',1,'knncolle::BruteforceSearcher::search_all(Index_ i, Float_ d, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)']]], - ['searcher_2',['Searcher',['https://knncolle.github.io/knncolle/classknncolle_1_1Searcher.html',1,'knncolle']]], - ['searcher_2ehpp_3',['Searcher.hpp',['https://knncolle.github.io/knncolle/Searcher_8hpp.html',1,'']]], - ['simplematrix_4',['simplematrix',['https://knncolle.github.io/knncolle/classknncolle_1_1SimpleMatrix.html',1,'knncolle::SimpleMatrix< typename Dim_, typename Index_, typename Data_ >'],['https://knncolle.github.io/knncolle/classknncolle_1_1SimpleMatrix.html#a5ff473e3597354a19a09456f6580121a',1,'knncolle::SimpleMatrix::SimpleMatrix()']]], - ['subsampling_5',['Nearest-neighbors subsampling',['../index.html',1,'']]] + ['raw_5fdistance_0',['raw_distance',['https://knncolle.github.io/knncolle/structknncolle_1_1EuclideanDistance.html#a0d6936a53ba4ed0e0ca33c9ac2515d06',1,'knncolle::EuclideanDistance::raw_distance()'],['https://knncolle.github.io/knncolle/structknncolle_1_1ManhattanDistance.html#ac782b1cfdb76e144a3d84d674e661456',1,'knncolle::ManhattanDistance::raw_distance()'],['https://knncolle.github.io/knncolle/structknncolle_1_1MockDistance.html#a7cfc77c0fd9806f9030a617404a5f954',1,'knncolle::MockDistance::raw_distance()']]], + ['refine_5falgorithm_1',['refine_algorithm',['https://knncolle.github.io/knncolle/structknncolle_1_1KmknnOptions.html#adf03e5a3046a1da5cacff93d37975ff8',1,'knncolle::KmknnOptions']]] ]; diff --git a/docs/search/all_e.js b/docs/search/all_e.js index b86a062..b11363a 100644 --- a/docs/search/all_e.js +++ b/docs/search/all_e.js @@ -1,7 +1,9 @@ var searchData= [ - ['vptree_2ehpp_0',['Vptree.hpp',['https://knncolle.github.io/knncolle/Vptree_8hpp.html',1,'']]], - ['vptreebuilder_1',['VptreeBuilder',['https://knncolle.github.io/knncolle/classknncolle_1_1VptreeBuilder.html',1,'knncolle']]], - ['vptreeprebuilt_2',['vptreeprebuilt',['https://knncolle.github.io/knncolle/classknncolle_1_1VptreePrebuilt.html',1,'knncolle::VptreePrebuilt< class Distance_, typename Dim_, typename Index_, typename Store_, typename Float_ >'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreePrebuilt.html#a5391976fe1e6b957181229a8590a6ca3',1,'knncolle::VptreePrebuilt::VptreePrebuilt()']]], - ['vptreesearcher_3',['VptreeSearcher',['https://knncolle.github.io/knncolle/classknncolle_1_1VptreeSearcher.html',1,'knncolle']]] + ['search_0',['search',['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforceSearcher.html#a5250b4ce7176fbe1a60783bc4dd324f0',1,'knncolle::BruteforceSearcher::search(Index_ i, Index_ k, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforceSearcher.html#afef023240ea7ddcc28561c0f71c54601',1,'knncolle::BruteforceSearcher::search(const Float_ *query, Index_ k, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnSearcher.html#a3db2397321aec4f6e89774f22f71c482',1,'knncolle::KmknnSearcher::search(Index_ i, Index_ k, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnSearcher.html#aa7c1f3e8224d260adfec2625216e90c6',1,'knncolle::KmknnSearcher::search(const Float_ *query, Index_ k, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1Searcher.html#a6ad140ee93a7af57fdb722c16476aee4',1,'knncolle::Searcher::search(Index_ i, Index_ k, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)=0'],['https://knncolle.github.io/knncolle/classknncolle_1_1Searcher.html#a9f4bac73a3dd958d1f09e1093bd1cf01',1,'knncolle::Searcher::search(const Float_ *query, Index_ k, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)=0'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreeSearcher.html#a3b2a7c230cfdf88cf1fa42896ca5909a',1,'knncolle::VptreeSearcher::search(Index_ i, Index_ k, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreeSearcher.html#ac86dd5bf34f233d04502e789224eb44a',1,'knncolle::VptreeSearcher::search(const Float_ *query, Index_ k, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)']]], + ['search_5fall_1',['search_all',['https://knncolle.github.io/knncolle/classknncolle_1_1VptreeSearcher.html#a51594cb79d1ea89aea64359690e5301e',1,'knncolle::VptreeSearcher::search_all(const Float_ *query, Float_ d, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreeSearcher.html#ab1cdb331dcde946b831446f219979d3a',1,'knncolle::VptreeSearcher::search_all(Index_ i, Float_ d, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1Searcher.html#adbe92827aebee347f57257591712d093',1,'knncolle::Searcher::search_all(const Float_ *query, Float_ distance, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1Searcher.html#ae7fb8a8e436303c5917f3717393cf056',1,'knncolle::Searcher::search_all(Index_ i, Float_ distance, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnSearcher.html#a268f3f69058d2d5a1d0514d37ec5f97c',1,'knncolle::KmknnSearcher::search_all(const Float_ *query, Float_ d, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnSearcher.html#ac31860ebca446559f97c8b07f4c37efa',1,'knncolle::KmknnSearcher::search_all(Index_ i, Float_ d, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforceSearcher.html#aae68bf23ca7d80dbf0a6138cb8cb6d15',1,'knncolle::BruteforceSearcher::search_all(const Float_ *query, Float_ d, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforceSearcher.html#a1164e4e1e627b716f9db91e8931872e9',1,'knncolle::BruteforceSearcher::search_all(Index_ i, Float_ d, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)']]], + ['searcher_2',['Searcher',['https://knncolle.github.io/knncolle/classknncolle_1_1Searcher.html',1,'knncolle']]], + ['searcher_2ehpp_3',['Searcher.hpp',['https://knncolle.github.io/knncolle/Searcher_8hpp.html',1,'']]], + ['simplematrix_4',['simplematrix',['https://knncolle.github.io/knncolle/classknncolle_1_1SimpleMatrix.html',1,'knncolle::SimpleMatrix< typename Dim_, typename Index_, typename Data_ >'],['https://knncolle.github.io/knncolle/classknncolle_1_1SimpleMatrix.html#a5ff473e3597354a19a09456f6580121a',1,'knncolle::SimpleMatrix::SimpleMatrix()']]], + ['subsampling_5',['Nearest-neighbors subsampling',['../index.html',1,'']]] ]; diff --git a/docs/search/all_f.js b/docs/search/all_f.js index b0ca348..b86a062 100644 --- a/docs/search/all_f.js +++ b/docs/search/all_f.js @@ -1,4 +1,7 @@ var searchData= [ - ['workspace_0',['Workspace',['https://knncolle.github.io/knncolle/structknncolle_1_1MockMatrix_1_1Workspace.html',1,'knncolle::MockMatrix']]] + ['vptree_2ehpp_0',['Vptree.hpp',['https://knncolle.github.io/knncolle/Vptree_8hpp.html',1,'']]], + ['vptreebuilder_1',['VptreeBuilder',['https://knncolle.github.io/knncolle/classknncolle_1_1VptreeBuilder.html',1,'knncolle']]], + ['vptreeprebuilt_2',['vptreeprebuilt',['https://knncolle.github.io/knncolle/classknncolle_1_1VptreePrebuilt.html',1,'knncolle::VptreePrebuilt< class Distance_, typename Dim_, typename Index_, typename Store_, typename Float_ >'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreePrebuilt.html#a5391976fe1e6b957181229a8590a6ca3',1,'knncolle::VptreePrebuilt::VptreePrebuilt()']]], + ['vptreesearcher_3',['VptreeSearcher',['https://knncolle.github.io/knncolle/classknncolle_1_1VptreeSearcher.html',1,'knncolle']]] ]; diff --git a/docs/search/classes_3.js b/docs/search/classes_3.js index db9f742..2c68624 100644 --- a/docs/search/classes_3.js +++ b/docs/search/classes_3.js @@ -1,6 +1,7 @@ var searchData= [ - ['manhattandistance_0',['ManhattanDistance',['https://knncolle.github.io/knncolle/structknncolle_1_1ManhattanDistance.html',1,'knncolle']]], - ['mockdistance_1',['MockDistance',['https://knncolle.github.io/knncolle/structknncolle_1_1MockDistance.html',1,'knncolle']]], - ['mockmatrix_2',['MockMatrix',['https://knncolle.github.io/knncolle/classknncolle_1_1MockMatrix.html',1,'knncolle']]] + ['l2normalizedbuilder_0',['L2NormalizedBuilder',['https://knncolle.github.io/knncolle/classknncolle_1_1L2NormalizedBuilder.html',1,'knncolle']]], + ['l2normalizedmatrix_1',['L2NormalizedMatrix',['https://knncolle.github.io/knncolle/classknncolle_1_1L2NormalizedMatrix.html',1,'knncolle']]], + ['l2normalizedprebuilt_2',['L2NormalizedPrebuilt',['https://knncolle.github.io/knncolle/classknncolle_1_1L2NormalizedPrebuilt.html',1,'knncolle']]], + ['l2normalizedsearcher_3',['L2NormalizedSearcher',['https://knncolle.github.io/knncolle/classknncolle_1_1L2NormalizedSearcher.html',1,'knncolle']]] ]; diff --git a/docs/search/classes_4.js b/docs/search/classes_4.js index 3b6fe03..db9f742 100644 --- a/docs/search/classes_4.js +++ b/docs/search/classes_4.js @@ -1,4 +1,6 @@ var searchData= [ - ['options_0',['Options',['../structnenesub_1_1Options.html',1,'nenesub']]] + ['manhattandistance_0',['ManhattanDistance',['https://knncolle.github.io/knncolle/structknncolle_1_1ManhattanDistance.html',1,'knncolle']]], + ['mockdistance_1',['MockDistance',['https://knncolle.github.io/knncolle/structknncolle_1_1MockDistance.html',1,'knncolle']]], + ['mockmatrix_2',['MockMatrix',['https://knncolle.github.io/knncolle/classknncolle_1_1MockMatrix.html',1,'knncolle']]] ]; diff --git a/docs/search/classes_5.js b/docs/search/classes_5.js index d7b3135..3b6fe03 100644 --- a/docs/search/classes_5.js +++ b/docs/search/classes_5.js @@ -1,4 +1,4 @@ var searchData= [ - ['prebuilt_0',['Prebuilt',['https://knncolle.github.io/knncolle/classknncolle_1_1Prebuilt.html',1,'knncolle']]] + ['options_0',['Options',['../structnenesub_1_1Options.html',1,'nenesub']]] ]; diff --git a/docs/search/classes_6.js b/docs/search/classes_6.js index be4255a..d7b3135 100644 --- a/docs/search/classes_6.js +++ b/docs/search/classes_6.js @@ -1,5 +1,4 @@ var searchData= [ - ['searcher_0',['Searcher',['https://knncolle.github.io/knncolle/classknncolle_1_1Searcher.html',1,'knncolle']]], - ['simplematrix_1',['SimpleMatrix',['https://knncolle.github.io/knncolle/classknncolle_1_1SimpleMatrix.html',1,'knncolle']]] + ['prebuilt_0',['Prebuilt',['https://knncolle.github.io/knncolle/classknncolle_1_1Prebuilt.html',1,'knncolle']]] ]; diff --git a/docs/search/classes_7.js b/docs/search/classes_7.js index fd05c03..be4255a 100644 --- a/docs/search/classes_7.js +++ b/docs/search/classes_7.js @@ -1,6 +1,5 @@ var searchData= [ - ['vptreebuilder_0',['VptreeBuilder',['https://knncolle.github.io/knncolle/classknncolle_1_1VptreeBuilder.html',1,'knncolle']]], - ['vptreeprebuilt_1',['VptreePrebuilt',['https://knncolle.github.io/knncolle/classknncolle_1_1VptreePrebuilt.html',1,'knncolle']]], - ['vptreesearcher_2',['VptreeSearcher',['https://knncolle.github.io/knncolle/classknncolle_1_1VptreeSearcher.html',1,'knncolle']]] + ['searcher_0',['Searcher',['https://knncolle.github.io/knncolle/classknncolle_1_1Searcher.html',1,'knncolle']]], + ['simplematrix_1',['SimpleMatrix',['https://knncolle.github.io/knncolle/classknncolle_1_1SimpleMatrix.html',1,'knncolle']]] ]; diff --git a/docs/search/classes_8.js b/docs/search/classes_8.js index b0ca348..fd05c03 100644 --- a/docs/search/classes_8.js +++ b/docs/search/classes_8.js @@ -1,4 +1,6 @@ var searchData= [ - ['workspace_0',['Workspace',['https://knncolle.github.io/knncolle/structknncolle_1_1MockMatrix_1_1Workspace.html',1,'knncolle::MockMatrix']]] + ['vptreebuilder_0',['VptreeBuilder',['https://knncolle.github.io/knncolle/classknncolle_1_1VptreeBuilder.html',1,'knncolle']]], + ['vptreeprebuilt_1',['VptreePrebuilt',['https://knncolle.github.io/knncolle/classknncolle_1_1VptreePrebuilt.html',1,'knncolle']]], + ['vptreesearcher_2',['VptreeSearcher',['https://knncolle.github.io/knncolle/classknncolle_1_1VptreeSearcher.html',1,'knncolle']]] ]; diff --git a/docs/search/classes_9.js b/docs/search/classes_9.js new file mode 100644 index 0000000..b0ca348 --- /dev/null +++ b/docs/search/classes_9.js @@ -0,0 +1,4 @@ +var searchData= +[ + ['workspace_0',['Workspace',['https://knncolle.github.io/knncolle/structknncolle_1_1MockMatrix_1_1Workspace.html',1,'knncolle::MockMatrix']]] +]; diff --git a/docs/search/files_4.js b/docs/search/files_4.js index 4fffb60..ebb3aef 100644 --- a/docs/search/files_4.js +++ b/docs/search/files_4.js @@ -1,4 +1,4 @@ var searchData= [ - ['mockmatrix_2ehpp_0',['MockMatrix.hpp',['https://knncolle.github.io/knncolle/MockMatrix_8hpp.html',1,'']]] + ['l2normalized_2ehpp_0',['L2Normalized.hpp',['https://knncolle.github.io/knncolle/L2Normalized_8hpp.html',1,'']]] ]; diff --git a/docs/search/files_5.js b/docs/search/files_5.js index 01b84c4..4fffb60 100644 --- a/docs/search/files_5.js +++ b/docs/search/files_5.js @@ -1,4 +1,4 @@ var searchData= [ - ['nenesub_2ehpp_0',['nenesub.hpp',['../nenesub_8hpp.html',1,'']]] + ['mockmatrix_2ehpp_0',['MockMatrix.hpp',['https://knncolle.github.io/knncolle/MockMatrix_8hpp.html',1,'']]] ]; diff --git a/docs/search/files_6.js b/docs/search/files_6.js index 067928c..01b84c4 100644 --- a/docs/search/files_6.js +++ b/docs/search/files_6.js @@ -1,4 +1,4 @@ var searchData= [ - ['prebuilt_2ehpp_0',['Prebuilt.hpp',['https://knncolle.github.io/knncolle/Prebuilt_8hpp.html',1,'']]] + ['nenesub_2ehpp_0',['nenesub.hpp',['../nenesub_8hpp.html',1,'']]] ]; diff --git a/docs/search/files_7.js b/docs/search/files_7.js index 88223c5..067928c 100644 --- a/docs/search/files_7.js +++ b/docs/search/files_7.js @@ -1,4 +1,4 @@ var searchData= [ - ['searcher_2ehpp_0',['Searcher.hpp',['https://knncolle.github.io/knncolle/Searcher_8hpp.html',1,'']]] + ['prebuilt_2ehpp_0',['Prebuilt.hpp',['https://knncolle.github.io/knncolle/Prebuilt_8hpp.html',1,'']]] ]; diff --git a/docs/search/files_8.js b/docs/search/files_8.js index 073f12b..88223c5 100644 --- a/docs/search/files_8.js +++ b/docs/search/files_8.js @@ -1,4 +1,4 @@ var searchData= [ - ['vptree_2ehpp_0',['Vptree.hpp',['https://knncolle.github.io/knncolle/Vptree_8hpp.html',1,'']]] + ['searcher_2ehpp_0',['Searcher.hpp',['https://knncolle.github.io/knncolle/Searcher_8hpp.html',1,'']]] ]; diff --git a/docs/search/files_9.js b/docs/search/files_9.js new file mode 100644 index 0000000..073f12b --- /dev/null +++ b/docs/search/files_9.js @@ -0,0 +1,4 @@ +var searchData= +[ + ['vptree_2ehpp_0',['Vptree.hpp',['https://knncolle.github.io/knncolle/Vptree_8hpp.html',1,'']]] +]; diff --git a/docs/search/functions_0.js b/docs/search/functions_0.js index 35d86ef..3106279 100644 --- a/docs/search/functions_0.js +++ b/docs/search/functions_0.js @@ -1,6 +1,6 @@ var searchData= [ - ['build_5fraw_0',['build_raw',['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforceBuilder.html#a491f8b75d24452615248da7c236b7759',1,'knncolle::BruteforceBuilder::build_raw()'],['https://knncolle.github.io/knncolle/classknncolle_1_1Builder.html#aa1c84ac7bd4120f5539be1320b74f5f4',1,'knncolle::Builder::build_raw()'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnBuilder.html#aafe27a514becc203a33ec54584bf6562',1,'knncolle::KmknnBuilder::build_raw()'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreeBuilder.html#a0c25ca5b2d7a812032d7cf1d42e3ad3a',1,'knncolle::VptreeBuilder::build_raw()']]], + ['build_5fraw_0',['build_raw',['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforceBuilder.html#a491f8b75d24452615248da7c236b7759',1,'knncolle::BruteforceBuilder::build_raw()'],['https://knncolle.github.io/knncolle/classknncolle_1_1Builder.html#aa1c84ac7bd4120f5539be1320b74f5f4',1,'knncolle::Builder::build_raw()'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnBuilder.html#aafe27a514becc203a33ec54584bf6562',1,'knncolle::KmknnBuilder::build_raw()'],['https://knncolle.github.io/knncolle/classknncolle_1_1L2NormalizedBuilder.html#a9747f9c49d62c8d0c47c017586e0b297',1,'knncolle::L2NormalizedBuilder::build_raw()'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreeBuilder.html#a0c25ca5b2d7a812032d7cf1d42e3ad3a',1,'knncolle::VptreeBuilder::build_raw()']]], ['build_5fshared_1',['build_shared',['https://knncolle.github.io/knncolle/classknncolle_1_1Builder.html#afe899198735bd5f9d1921283fa65ff3a',1,'knncolle::Builder']]], ['build_5funique_2',['build_unique',['https://knncolle.github.io/knncolle/classknncolle_1_1Builder.html#afeda432debae999f988f32f147055251',1,'knncolle::Builder']]] ]; diff --git a/docs/search/functions_5.js b/docs/search/functions_5.js index 5fa6479..9f08fcd 100644 --- a/docs/search/functions_5.js +++ b/docs/search/functions_5.js @@ -1,4 +1,4 @@ var searchData= [ - ['initialize_0',['initialize',['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforcePrebuilt.html#a591b94e2c5f4a0fe404cf89dcc20d0de',1,'knncolle::BruteforcePrebuilt::initialize()'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnPrebuilt.html#a361ec0511a7cd79ce3f318560a8349cf',1,'knncolle::KmknnPrebuilt::initialize()'],['https://knncolle.github.io/knncolle/classknncolle_1_1Prebuilt.html#a71b757b154aa2713d732afd2d9444bb9',1,'knncolle::Prebuilt::initialize()'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreePrebuilt.html#a583eeead36f94b77d5ceb46c47fd8aa3',1,'knncolle::VptreePrebuilt::initialize()']]] + ['initialize_0',['initialize',['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforcePrebuilt.html#a591b94e2c5f4a0fe404cf89dcc20d0de',1,'knncolle::BruteforcePrebuilt::initialize()'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnPrebuilt.html#a361ec0511a7cd79ce3f318560a8349cf',1,'knncolle::KmknnPrebuilt::initialize()'],['https://knncolle.github.io/knncolle/classknncolle_1_1L2NormalizedPrebuilt.html#a0879ea8c8512d04a2f73fb7afd7eae56',1,'knncolle::L2NormalizedPrebuilt::initialize()'],['https://knncolle.github.io/knncolle/classknncolle_1_1Prebuilt.html#a71b757b154aa2713d732afd2d9444bb9',1,'knncolle::Prebuilt::initialize()'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreePrebuilt.html#a583eeead36f94b77d5ceb46c47fd8aa3',1,'knncolle::VptreePrebuilt::initialize()']]] ]; diff --git a/docs/search/functions_7.js b/docs/search/functions_7.js index 07ed02a..72eb194 100644 --- a/docs/search/functions_7.js +++ b/docs/search/functions_7.js @@ -1,6 +1,6 @@ var searchData= [ - ['normalize_0',['normalize',['https://knncolle.github.io/knncolle/structknncolle_1_1EuclideanDistance.html#a79fdf3c2dde43bd0e9103486b8a4839b',1,'knncolle::EuclideanDistance::normalize()'],['https://knncolle.github.io/knncolle/structknncolle_1_1ManhattanDistance.html#a4dea393df5acd96968fa6476ee6d6ad0',1,'knncolle::ManhattanDistance::normalize()'],['https://knncolle.github.io/knncolle/structknncolle_1_1MockDistance.html#acf139f39a2c07856820442a8e12701cd',1,'knncolle::MockDistance::normalize()']]], - ['num_5fdimensions_1',['num_dimensions',['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforcePrebuilt.html#a8623475e148b181f29623cf4b3c7a5f4',1,'knncolle::BruteforcePrebuilt::num_dimensions()'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnPrebuilt.html#adad9d751074e36037ea3e20bd20a50c3',1,'knncolle::KmknnPrebuilt::num_dimensions()'],['https://knncolle.github.io/knncolle/classknncolle_1_1MockMatrix.html#accf6389be4fd0d9a9f0c6ed3c73d30d6',1,'knncolle::MockMatrix::num_dimensions()'],['https://knncolle.github.io/knncolle/classknncolle_1_1Prebuilt.html#a99412339915bc2ff0a6cd58ef4012d74',1,'knncolle::Prebuilt::num_dimensions()'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreePrebuilt.html#aa3945048112b06bcbf9a4039f55581fe',1,'knncolle::VptreePrebuilt::num_dimensions()']]], - ['num_5fobservations_2',['num_observations',['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforcePrebuilt.html#a532a8a4fbe68d0df15f4618fd5d82983',1,'knncolle::BruteforcePrebuilt::num_observations()'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnPrebuilt.html#ac47cf8cff93bcb0c14a7312b9f1bf812',1,'knncolle::KmknnPrebuilt::num_observations()'],['https://knncolle.github.io/knncolle/classknncolle_1_1MockMatrix.html#ac3af3babb476ddf204a94e77a7b2196a',1,'knncolle::MockMatrix::num_observations()'],['https://knncolle.github.io/knncolle/classknncolle_1_1Prebuilt.html#a6dd837344267241384206661df28e1ab',1,'knncolle::Prebuilt::num_observations()'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreePrebuilt.html#a3bee679a176256a7f7247e636c8c26af',1,'knncolle::VptreePrebuilt::num_observations()']]] + ['l2normalizedbuilder_0',['l2normalizedbuilder',['https://knncolle.github.io/knncolle/classknncolle_1_1L2NormalizedBuilder.html#a7f3702fbbf54bbbaceb925aa2936bd45',1,'knncolle::L2NormalizedBuilder::L2NormalizedBuilder(std::unique_ptr< Builder< L2NormalizedMatrix< Matrix_ >, Float_ > > builder)'],['https://knncolle.github.io/knncolle/classknncolle_1_1L2NormalizedBuilder.html#a16df727021e97c341b7ef957eb79dd23',1,'knncolle::L2NormalizedBuilder::L2NormalizedBuilder(Builder< L2NormalizedMatrix< Matrix_ >, Float_ > *builder)']]], + ['l2normalizedprebuilt_1',['L2NormalizedPrebuilt',['https://knncolle.github.io/knncolle/classknncolle_1_1L2NormalizedPrebuilt.html#a43c889080f754e44c6085cc10a46f32b',1,'knncolle::L2NormalizedPrebuilt']]], + ['l2normalizedsearcher_2',['L2NormalizedSearcher',['https://knncolle.github.io/knncolle/classknncolle_1_1L2NormalizedSearcher.html#ad97e99e0fd85202cce0357333a78a2a4',1,'knncolle::L2NormalizedSearcher']]] ]; diff --git a/docs/search/functions_8.js b/docs/search/functions_8.js index 0664e3e..07ed02a 100644 --- a/docs/search/functions_8.js +++ b/docs/search/functions_8.js @@ -1,4 +1,6 @@ var searchData= [ - ['raw_5fdistance_0',['raw_distance',['https://knncolle.github.io/knncolle/structknncolle_1_1EuclideanDistance.html#a0d6936a53ba4ed0e0ca33c9ac2515d06',1,'knncolle::EuclideanDistance::raw_distance()'],['https://knncolle.github.io/knncolle/structknncolle_1_1ManhattanDistance.html#ac782b1cfdb76e144a3d84d674e661456',1,'knncolle::ManhattanDistance::raw_distance()'],['https://knncolle.github.io/knncolle/structknncolle_1_1MockDistance.html#a7cfc77c0fd9806f9030a617404a5f954',1,'knncolle::MockDistance::raw_distance()']]] + ['normalize_0',['normalize',['https://knncolle.github.io/knncolle/structknncolle_1_1EuclideanDistance.html#a79fdf3c2dde43bd0e9103486b8a4839b',1,'knncolle::EuclideanDistance::normalize()'],['https://knncolle.github.io/knncolle/structknncolle_1_1ManhattanDistance.html#a4dea393df5acd96968fa6476ee6d6ad0',1,'knncolle::ManhattanDistance::normalize()'],['https://knncolle.github.io/knncolle/structknncolle_1_1MockDistance.html#acf139f39a2c07856820442a8e12701cd',1,'knncolle::MockDistance::normalize()']]], + ['num_5fdimensions_1',['num_dimensions',['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforcePrebuilt.html#a8623475e148b181f29623cf4b3c7a5f4',1,'knncolle::BruteforcePrebuilt::num_dimensions()'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnPrebuilt.html#adad9d751074e36037ea3e20bd20a50c3',1,'knncolle::KmknnPrebuilt::num_dimensions()'],['https://knncolle.github.io/knncolle/classknncolle_1_1MockMatrix.html#accf6389be4fd0d9a9f0c6ed3c73d30d6',1,'knncolle::MockMatrix::num_dimensions()'],['https://knncolle.github.io/knncolle/classknncolle_1_1Prebuilt.html#a99412339915bc2ff0a6cd58ef4012d74',1,'knncolle::Prebuilt::num_dimensions()'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreePrebuilt.html#aa3945048112b06bcbf9a4039f55581fe',1,'knncolle::VptreePrebuilt::num_dimensions()']]], + ['num_5fobservations_2',['num_observations',['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforcePrebuilt.html#a532a8a4fbe68d0df15f4618fd5d82983',1,'knncolle::BruteforcePrebuilt::num_observations()'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnPrebuilt.html#ac47cf8cff93bcb0c14a7312b9f1bf812',1,'knncolle::KmknnPrebuilt::num_observations()'],['https://knncolle.github.io/knncolle/classknncolle_1_1MockMatrix.html#ac3af3babb476ddf204a94e77a7b2196a',1,'knncolle::MockMatrix::num_observations()'],['https://knncolle.github.io/knncolle/classknncolle_1_1Prebuilt.html#a6dd837344267241384206661df28e1ab',1,'knncolle::Prebuilt::num_observations()'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreePrebuilt.html#a3bee679a176256a7f7247e636c8c26af',1,'knncolle::VptreePrebuilt::num_observations()']]] ]; diff --git a/docs/search/functions_9.js b/docs/search/functions_9.js index 23a74b7..37b1c73 100644 --- a/docs/search/functions_9.js +++ b/docs/search/functions_9.js @@ -1,6 +1,4 @@ var searchData= [ - ['search_0',['search',['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforceSearcher.html#afef023240ea7ddcc28561c0f71c54601',1,'knncolle::BruteforceSearcher::search()'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnSearcher.html#a3db2397321aec4f6e89774f22f71c482',1,'knncolle::KmknnSearcher::search(Index_ i, Index_ k, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnSearcher.html#aa7c1f3e8224d260adfec2625216e90c6',1,'knncolle::KmknnSearcher::search(const Float_ *query, Index_ k, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1Searcher.html#a6ad140ee93a7af57fdb722c16476aee4',1,'knncolle::Searcher::search(Index_ i, Index_ k, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)=0'],['https://knncolle.github.io/knncolle/classknncolle_1_1Searcher.html#a9f4bac73a3dd958d1f09e1093bd1cf01',1,'knncolle::Searcher::search(const Float_ *query, Index_ k, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)=0'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreeSearcher.html#a3b2a7c230cfdf88cf1fa42896ca5909a',1,'knncolle::VptreeSearcher::search(Index_ i, Index_ k, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreeSearcher.html#ac86dd5bf34f233d04502e789224eb44a',1,'knncolle::VptreeSearcher::search(const Float_ *query, Index_ k, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforceSearcher.html#a5250b4ce7176fbe1a60783bc4dd324f0',1,'knncolle::BruteforceSearcher::search(Index_ i, Index_ k, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)']]], - ['search_5fall_1',['search_all',['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforceSearcher.html#a1164e4e1e627b716f9db91e8931872e9',1,'knncolle::BruteforceSearcher::search_all()'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreeSearcher.html#a51594cb79d1ea89aea64359690e5301e',1,'knncolle::VptreeSearcher::search_all(const Float_ *query, Float_ d, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreeSearcher.html#ab1cdb331dcde946b831446f219979d3a',1,'knncolle::VptreeSearcher::search_all(Index_ i, Float_ d, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1Searcher.html#adbe92827aebee347f57257591712d093',1,'knncolle::Searcher::search_all(const Float_ *query, Float_ distance, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1Searcher.html#ae7fb8a8e436303c5917f3717393cf056',1,'knncolle::Searcher::search_all(Index_ i, Float_ distance, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnSearcher.html#a268f3f69058d2d5a1d0514d37ec5f97c',1,'knncolle::KmknnSearcher::search_all(const Float_ *query, Float_ d, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnSearcher.html#ac31860ebca446559f97c8b07f4c37efa',1,'knncolle::KmknnSearcher::search_all(Index_ i, Float_ d, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforceSearcher.html#aae68bf23ca7d80dbf0a6138cb8cb6d15',1,'knncolle::BruteforceSearcher::search_all()']]], - ['simplematrix_2',['SimpleMatrix',['https://knncolle.github.io/knncolle/classknncolle_1_1SimpleMatrix.html#a5ff473e3597354a19a09456f6580121a',1,'knncolle::SimpleMatrix']]] + ['parallelize_0',['parallelize',['https://knncolle.github.io/knncolle/namespaceknncolle.html#a5faf80c12bbfbab853c41f6d001fe073',1,'knncolle']]] ]; diff --git a/docs/search/functions_a.js b/docs/search/functions_a.js index 4e393da..0664e3e 100644 --- a/docs/search/functions_a.js +++ b/docs/search/functions_a.js @@ -1,4 +1,4 @@ var searchData= [ - ['vptreeprebuilt_0',['VptreePrebuilt',['https://knncolle.github.io/knncolle/classknncolle_1_1VptreePrebuilt.html#a5391976fe1e6b957181229a8590a6ca3',1,'knncolle::VptreePrebuilt']]] + ['raw_5fdistance_0',['raw_distance',['https://knncolle.github.io/knncolle/structknncolle_1_1EuclideanDistance.html#a0d6936a53ba4ed0e0ca33c9ac2515d06',1,'knncolle::EuclideanDistance::raw_distance()'],['https://knncolle.github.io/knncolle/structknncolle_1_1ManhattanDistance.html#ac782b1cfdb76e144a3d84d674e661456',1,'knncolle::ManhattanDistance::raw_distance()'],['https://knncolle.github.io/knncolle/structknncolle_1_1MockDistance.html#a7cfc77c0fd9806f9030a617404a5f954',1,'knncolle::MockDistance::raw_distance()']]] ]; diff --git a/docs/search/functions_b.js b/docs/search/functions_b.js new file mode 100644 index 0000000..23a74b7 --- /dev/null +++ b/docs/search/functions_b.js @@ -0,0 +1,6 @@ +var searchData= +[ + ['search_0',['search',['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforceSearcher.html#afef023240ea7ddcc28561c0f71c54601',1,'knncolle::BruteforceSearcher::search()'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnSearcher.html#a3db2397321aec4f6e89774f22f71c482',1,'knncolle::KmknnSearcher::search(Index_ i, Index_ k, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnSearcher.html#aa7c1f3e8224d260adfec2625216e90c6',1,'knncolle::KmknnSearcher::search(const Float_ *query, Index_ k, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1Searcher.html#a6ad140ee93a7af57fdb722c16476aee4',1,'knncolle::Searcher::search(Index_ i, Index_ k, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)=0'],['https://knncolle.github.io/knncolle/classknncolle_1_1Searcher.html#a9f4bac73a3dd958d1f09e1093bd1cf01',1,'knncolle::Searcher::search(const Float_ *query, Index_ k, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)=0'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreeSearcher.html#a3b2a7c230cfdf88cf1fa42896ca5909a',1,'knncolle::VptreeSearcher::search(Index_ i, Index_ k, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreeSearcher.html#ac86dd5bf34f233d04502e789224eb44a',1,'knncolle::VptreeSearcher::search(const Float_ *query, Index_ k, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforceSearcher.html#a5250b4ce7176fbe1a60783bc4dd324f0',1,'knncolle::BruteforceSearcher::search(Index_ i, Index_ k, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)']]], + ['search_5fall_1',['search_all',['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforceSearcher.html#a1164e4e1e627b716f9db91e8931872e9',1,'knncolle::BruteforceSearcher::search_all()'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreeSearcher.html#a51594cb79d1ea89aea64359690e5301e',1,'knncolle::VptreeSearcher::search_all(const Float_ *query, Float_ d, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1VptreeSearcher.html#ab1cdb331dcde946b831446f219979d3a',1,'knncolle::VptreeSearcher::search_all(Index_ i, Float_ d, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1Searcher.html#adbe92827aebee347f57257591712d093',1,'knncolle::Searcher::search_all(const Float_ *query, Float_ distance, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1Searcher.html#ae7fb8a8e436303c5917f3717393cf056',1,'knncolle::Searcher::search_all(Index_ i, Float_ distance, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnSearcher.html#a268f3f69058d2d5a1d0514d37ec5f97c',1,'knncolle::KmknnSearcher::search_all(const Float_ *query, Float_ d, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1KmknnSearcher.html#ac31860ebca446559f97c8b07f4c37efa',1,'knncolle::KmknnSearcher::search_all(Index_ i, Float_ d, std::vector< Index_ > *output_indices, std::vector< Float_ > *output_distances)'],['https://knncolle.github.io/knncolle/classknncolle_1_1BruteforceSearcher.html#aae68bf23ca7d80dbf0a6138cb8cb6d15',1,'knncolle::BruteforceSearcher::search_all()']]], + ['simplematrix_2',['SimpleMatrix',['https://knncolle.github.io/knncolle/classknncolle_1_1SimpleMatrix.html#a5ff473e3597354a19a09456f6580121a',1,'knncolle::SimpleMatrix']]] +]; diff --git a/docs/search/functions_c.js b/docs/search/functions_c.js new file mode 100644 index 0000000..4e393da --- /dev/null +++ b/docs/search/functions_c.js @@ -0,0 +1,4 @@ +var searchData= +[ + ['vptreeprebuilt_0',['VptreePrebuilt',['https://knncolle.github.io/knncolle/classknncolle_1_1VptreePrebuilt.html#a5391976fe1e6b957181229a8590a6ca3',1,'knncolle::VptreePrebuilt']]] +]; diff --git a/docs/search/searchdata.js b/docs/search/searchdata.js index 799e39d..17bc1d9 100644 --- a/docs/search/searchdata.js +++ b/docs/search/searchdata.js @@ -1,10 +1,10 @@ var indexSectionsWithContent = { - 0: "bcdefgikmnoprsvw", - 1: "bekmopsvw", + 0: "bcdefgiklmnoprsvw", + 1: "beklmopsvw", 2: "kn", - 3: "bdfkmnpsv", - 4: "bcdfgiknrsv", + 3: "bdfklmnpsv", + 4: "bcdfgiklnprsv", 5: "imnpr", 6: "dino", 7: "ns" diff --git a/docs/search/typedefs_2.js b/docs/search/typedefs_2.js index d0800fd..2755f39 100644 --- a/docs/search/typedefs_2.js +++ b/docs/search/typedefs_2.js @@ -1,4 +1,4 @@ var searchData= [ - ['neighborlist_0',['NeighborList',['https://knncolle.github.io/knncolle/namespaceknncolle.html#a3faddeb80b10f56cb982a4e83ad3aca9',1,'knncolle']]] + ['neighborlist_0',['NeighborList',['https://knncolle.github.io/knncolle/namespaceknncolle.html#a25d7a950cf7745b99bc834b79e064c09',1,'knncolle']]] ]; diff --git a/docs/structnenesub_1_1Options.html b/docs/structnenesub_1_1Options.html index 3f93ce4..38a0d38 100644 --- a/docs/structnenesub_1_1Options.html +++ b/docs/structnenesub_1_1Options.html @@ -147,7 +147,7 @@

-

The number of threads to use. Only relevant for the compute() overloads without pre-computed neighbors.

+

The number of threads to use. This uses the parallelization scheme defined by knncolle::parallelize(). Only relevant for the compute() overloads that perform a neighbor search.