-
Notifications
You must be signed in to change notification settings - Fork 1
/
check_and_estimate_finetuned.py
181 lines (144 loc) · 6.27 KB
/
check_and_estimate_finetuned.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
"""
======================================================================
PREPARE_FINETUNED ---
Examples of data preparation and analysis of OpenAI's fine-tuning.
Reference: https://cookbook.openai.com/examples/chat_finetuning_data_prep
Author: Zi Liang <[email protected]>
Copyright © 2023, ZiLiang, all rights reserved.
Created: 11 November 2023
======================================================================
"""
# ------------------------ Code --------------------------------------
# normal import
import json
from typing import List, Tuple, Dict
import random
from pprint import pprint as ppp
import tiktoken # for token sampling
import numpy as np
from collections import defaultdict, OrderedDict
encoding = tiktoken.get_encoding("cl100k_base")
# not exact!
# simplified from https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
def num_tokens_from_messages(messages, tokens_per_message=3, tokens_per_name=1):
num_tokens = 0
for message in messages:
num_tokens += tokens_per_message
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
num_tokens += 3
return num_tokens
def num_assistant_tokens_from_messages(messages):
num_tokens = 0
for message in messages:
if message["role"] == "assistant":
num_tokens += len(encoding.encode(message["content"]))
return num_tokens
def print_distribution(values, name):
print(f"\n#### Distribution of {name}:")
print(f"min / max: {min(values)}, {max(values)}")
print(f"mean / median: {np.mean(values)}, {np.median(values)}")
print(f"p5 / p95: {np.quantile(values, 0.1)}, {np.quantile(values, 0.9)}")
def estimate_dataset(pth,):
# from collections import OrderedDict
with open(pth, 'r', encoding='utf8') as f:
lines = f.readlines()
data = []
for x in lines:
data.append(json.loads(x[:-1]))
# data=json.load(f,object_pairs_hook=OrderedDict)
# 1. check formats
format_errors = defaultdict(int)
for ex in data:
if not isinstance(ex, dict):
format_errors["data_type"] += 1
continue
messages = ex.get("messages", None)
if not messages:
format_errors["missing_messages_list"] += 1
continue
for message in messages:
if "role" not in message or "content" not in message:
format_errors["message_missing_key"] += 1
if any(k not in ("role", "content", "name", "function_call") for k in message):
format_errors["message_unrecognized_key"] += 1
if message.get("role", None) not in ("system", "user", "assistant", "function"):
format_errors["unrecognized_role"] += 1
content = message.get("content", None)
function_call = message.get("function_call", None)
if (not content and not function_call) or not isinstance(content, str):
format_errors["missing_content"] += 1
if not any(message.get("role", None) == "assistant" for message in messages):
format_errors["example_missing_assistant_message"] += 1
if format_errors:
print("Found errors:")
for k, v in format_errors.items():
print(f"{k}: {v}")
print("====> Format Checking Failed. Now Exit.")
return -1
##
# Warnings and tokens counts
n_missing_system = 0
n_missing_user = 0
n_messages = []
convo_lens = []
assistant_message_lens = []
for ex in data:
messages = ex["messages"]
if not any(message["role"] == "system" for message in messages):
n_missing_system += 1
if not any(message["role"] == "user" for message in messages):
n_missing_user += 1
n_messages.append(len(messages))
convo_lens.append(num_tokens_from_messages(messages))
assistant_message_lens.append(
num_assistant_tokens_from_messages(messages))
print("Num examples missing system message:", n_missing_system)
print("Num examples missing user message:", n_missing_user)
print_distribution(n_messages, "num_messages_per_example")
print_distribution(convo_lens, "num_total_tokens_per_example")
print_distribution(assistant_message_lens,
"num_assistant_tokens_per_example")
n_too_long = sum(l > 4096 for l in convo_lens)
print(f"\n{n_too_long} examples may be over the 4096 token limit, they will be truncated during fine-tuning")
# finally, make cost estimation
# Pricing and default n_epochs estimate
MAX_TOKENS_PER_EXAMPLE = 1024
TARGET_EPOCHS = 3
MIN_TARGET_EXAMPLES = 100
MAX_TARGET_EXAMPLES = 1000
MIN_DEFAULT_EPOCHS = 1
MAX_DEFAULT_EPOCHS = 6
n_epochs = TARGET_EPOCHS
n_train_examples = len(data)
if n_train_examples * TARGET_EPOCHS < MIN_TARGET_EXAMPLES:
n_epochs = min(MAX_DEFAULT_EPOCHS,
MIN_TARGET_EXAMPLES // n_train_examples)
elif n_train_examples * TARGET_EPOCHS > MAX_TARGET_EXAMPLES:
n_epochs = max(MIN_DEFAULT_EPOCHS,
MAX_TARGET_EXAMPLES // n_train_examples)
n_billing_tokens_in_dataset = sum(
min(MAX_TOKENS_PER_EXAMPLE, length) for length in convo_lens)
print(
f"Dataset has ~{n_billing_tokens_in_dataset} tokens that will be charged for during training")
print(f"By default, you'll train for {n_epochs} epochs on this dataset")
print(
f"By default, you'll be charged for ~{n_epochs * n_billing_tokens_in_dataset} tokens")
print("=======")
price_train_per_token = 0.0080
print(f"prices per 1k Token: ${price_train_per_token}")
print(
f"Price may overall cost: ${price_train_per_token*n_epochs*n_billing_tokens_in_dataset/1000}")
def main():
estimate_dataset(
"./data/ContractSections___fewshot_dataset.json____openAI_format_train.jsonl")
estimate_dataset(
"./data/ContractTypes___fewshot_dataset.json____openAI_format_train.jsonl")
estimate_dataset(
"./data/CrimeCharges___fewshot_dataset.json____openAI_format_train.jsonl")
# running entry
if __name__ == "__main__":
main()
print("EVERYTHING DONE.")