-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaorta_mesh.py
67 lines (59 loc) · 2.1 KB
/
aorta_mesh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# -*- coding: utf-8 -*-
"""
Created on Sat Jun 5 10:37:46 2021
@author: liang
"""
import sys
sys.path.append("mesh")
import torch
from QuadMesh import QuadMesh
from PolyhedronMesh import PolyhedronMesh
#%%
def get_boundary0(n_layers, N1=50, N2=5000):
boundary0=[]
for n in range(0, n_layers+1):
boundary0.append(torch.arange(0, N1, 1)+n*N2)
boundary0=torch.cat(boundary0, dim=0)
return boundary0
def get_boundary1(n_layers, N1=50, N2=5000):
boundary1=[]
for n in range(0, n_layers+1):
boundary1.append(torch.arange(N2-N1, N2, 1)+n*N2)
boundary1=torch.cat(boundary1, dim=0)
return boundary1
def get_solid_mesh_cfg(filename_shell, n_layers=1, N1=50):
aorta_shell=QuadMesh()
#aorta_shell.load_from_vtk(filename_shell, dtype=torch.float64)
aorta_shell.load_from_torch(filename_shell)
N2 = aorta_shell.node.shape[0]
element_surface_pressure=aorta_shell.element
element_surface_free=aorta_shell.element+N2*n_layers
boundary0=get_boundary0(n_layers, N1, N2)
boundary1=get_boundary1(n_layers, N1, N2)
return boundary0, boundary1, element_surface_pressure, element_surface_free
def cal_u_boundary(node, boundary, r):
pos=node[boundary]
center=pos.mean(dim=1, keepdim=True)
direction=pos-center
direction=direction/torch.norm(direction, p=2, dim=1, keepdim=True)
r=r.view(-1,1)
u=r*direction
return u
def shell_to_solid(shell_node, shell_element, thickness):
#four layers
#thickness: [0.5, 0.5, 0.5, 0.5] four layers, 0.5mmm thickness per layer
normal=QuadMesh.cal_node_normal(shell_node, shell_element)
node=[]
node.append(shell_node)
for n in range(0, len(thickness)):
node.append(shell_node+sum(thickness[0:(n+1)])*normal)
node=torch.cat(node, dim=0)
element=[]
for n in range(0, len(thickness)):
for m in range(0, shell_element.shape[0]):
e=list(shell_element[m]+n*shell_node.shape[0])
e.extend(list(shell_element[m]+(n+1)*shell_node.shape[0]))
element.append(e)
element=torch.tensor(element, dtype=torch.int64)
return node, element
#%%