-
Notifications
You must be signed in to change notification settings - Fork 15
/
evaluation.py
157 lines (110 loc) · 4.32 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from __future__ import print_function
import torch
import numpy as np
import util
from generic_utils import Progbar
def l2norm(X):
"""L2-normalize columns of X
"""
norm = np.linalg.norm(X, axis=1, keepdims=True)
return 1.0 * X / norm
@util.timer
def cosine_sim(query_embs, retro_embs):
query_embs = l2norm(query_embs)
retro_embs = l2norm(retro_embs)
return query_embs.dot(retro_embs.T)
def compute_sim(query_embs, retro_embs, measure='cosine'):
if measure == 'cosine':
return cosine_sim(query_embs, retro_embs)
elif measure == 'euclidean':
raise Exception('Not implemented')
else:
raise Exception('%s is invalid' % measure)
def encode_data(model, data_loader):
"""Encode all images and captions loadable by `data_loader`
"""
model.switch_to_eval()
vis_embs = None
txt_embs = None
vis_ids = ['']*len(data_loader.dataset)
txt_ids = ['']*len(data_loader.dataset)
pbar = Progbar(len(data_loader.dataset))
for i, (vis_input, txt_input, idxs, batch_vis_ids, batch_txt_ids) in enumerate(data_loader):
with torch.no_grad():
vis_emb = model.vis_net(vis_input)
txt_emb = model.txt_net(txt_input)
if vis_embs is None:
vis_embs = np.zeros((len(data_loader.dataset), vis_emb.size(1)))
txt_embs = np.zeros((len(data_loader.dataset), txt_emb.size(1)))
vis_embs[idxs] = vis_emb.data.cpu().numpy().copy()
txt_embs[idxs] = txt_emb.data.cpu().numpy().copy()
for j, idx in enumerate(idxs):
txt_ids[idx] = batch_txt_ids[j]
vis_ids[idx] = batch_vis_ids[j]
pbar.add(vis_emb.size(0))
return vis_embs, txt_embs, vis_ids, txt_ids
@util.timer
def encode_vis(model, data_loader):
model.switch_to_eval()
vis_embs = None
vis_ids = [''] * len(data_loader.dataset)
pbar = Progbar(len(data_loader.dataset))
for i, (vis_input, idxs, batch_vis_ids) in enumerate(data_loader):
with torch.no_grad():
vis_emb = model.vis_net(vis_input)
if vis_embs is None:
vis_embs = np.zeros((len(data_loader.dataset), vis_emb.size(1)))
vis_embs[idxs] = vis_emb.data.cpu().numpy().copy()
for j, idx in enumerate(idxs):
vis_ids[idx] = batch_vis_ids[j]
pbar.add(len(idxs))
return vis_embs, vis_ids
@util.timer
def encode_txt(model, data_loader):
model.switch_to_eval()
txt_embs = None
txt_ids = [''] * len(data_loader.dataset)
pbar = Progbar(len(data_loader.dataset))
for i, (txt_input, idxs, batch_txt_ids) in enumerate(data_loader):
with torch.no_grad():
txt_emb = model.txt_net(txt_input)
if txt_embs is None:
txt_embs = np.zeros((len(data_loader.dataset), txt_emb.size(1)))
txt_embs[idxs] = txt_emb.data.cpu().numpy().copy()
for j, idx in enumerate(idxs):
txt_ids[idx] = batch_txt_ids[j]
pbar.add(len(idxs))
return txt_embs, txt_ids
def eval_qry2retro(qry2retro_sim, n_qry=1):
"""
Query->Retrieval
qry2retro_sim: (n_qry*N, N) matrix of query to video similarity
"""
assert qry2retro_sim.shape[0] / qry2retro_sim.shape[1] == n_qry, qry2retro_sim.shape
ranks = np.zeros(qry2retro_sim.shape[0])
inds = np.argsort(qry2retro_sim, axis=1)
for index in range(len(ranks)):
ind = inds[index][::-1]
rank = np.where(ind == index/n_qry)[0][0]
ranks[index] = rank
# Compute metrics
r1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
r5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
r10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
medr = np.floor(np.median(ranks)) + 1
meanr = ranks.mean() + 1
mir = (1.0/(ranks+1)).mean()
return (r1, r5, r10, medr, meanr, mir)
def eval(label_matrix):
ranks = np.zeros(label_matrix.shape[0])
aps = np.zeros(label_matrix.shape[0])
for index in range(len(ranks)):
rank = np.where(label_matrix[index]==1)[0] + 1
ranks[index] = rank[0]
aps[index] = np.mean([(i+1.)/rank[i] for i in range(len(rank))])
r1, r5, r10 = [100.0*np.mean([x <= k for x in ranks]) for k in [1, 5, 10]]
medr = np.floor(np.median(ranks))
meanr = ranks.mean()
mir = (1.0/ranks).mean()
mAP = aps.mean()
return (r1, r5, r10, medr, meanr, mir, mAP)