You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
[21 Aug 15:45:50 - bigfile.py:line 24] 1000x500 instances loaded from /Users/xirong/VisualSearch/synset2vec/ilsvrc12_test1k/flickr4m,tagvec500,hierse2
[21 Aug 15:45:50 - im2vec.py:line 44] #active_labels=1000, embedding_size=500
[21 Aug 15:45:50 - bigfile.py:line 24] 382298x500 instances loaded from /Users/xirong/VisualSearch/flickr4m/word2vec/tagvec500
[21 Aug 15:45:51 - synset2vec.py:line 27] w2v(flickr4m): 382298 words, 500 dims
[21 Aug 15:45:51 - bigfile.py:line 24] 1548x500 instances loaded from /Users/xirong/VisualSearch/synset2vec/ilsvrc12_test1k_2hop/flickr4m,tagvec500,hierse2
[21 Aug 15:45:51 - tagger.py:line 43] #active_labels=1548, embedding_size=500
# get prediction scores for the known label set Y0, which is currently ilsvrc12_test1k# In the following example we use socres computed in advance.# Alternatively,call a pre-trained CNN model to get the scores on the fly image_collection='imagenet2hop-random2k'test_image_id='n01495006_2522'pY0='dascaffeprob'feat_dir=os.path.join(rootpath, image_collection, 'FeatureData', pY0)
feat_file=BigFile(feat_dir)
score_vec=feat_file.read_one(test_image_id) # assert (len(score_vec) ==1000)
[21 Aug 15:45:51 - bigfile.py:line 24] 2000x1000 instances loaded from /Users/xirong/VisualSearch/imagenet2hop-random2k/FeatureData/dascaffeprob