-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDataParser.py
188 lines (166 loc) · 6.62 KB
/
DataParser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import glob
import ntpath
import os
import numpy as np
from keras.preprocessing import image
ntpath.basename("a/b/c")
from AudioAugmentation import AudioAugmentation
class DataParser:
def __init__(self, type_folder, folders, graph_type=None, batch_size=20, val_percentage=0):
self.typeFolder = type_folder
self.folders = folders
self.graph_type = graph_type
self.batch_size = batch_size
self.augmentation = AudioAugmentation()
self.labels = {}
self._load_labels()
self.val_percentage = val_percentage
self.audio_files_name = self._get_audio_files_name()
self.raw_files_name = self._get_raw_files_name()
self.graph_files_name = self._get_graph_files_name()
self.val_graph_files_name = np.random.choice(self.graph_files_name,
int(len(self.graph_files_name) * val_percentage))
set_val = set(self.val_graph_files_name)
self.graph_files_name = [item for item in self.graph_files_name if item not in set_val]
def set_augmentation(self, augmentation):
self.augmentation = augmentation
def get_dataset_plot_generator(self):
i = 0
file_list = self.graph_files_name
import random
random.shuffle(file_list)
while True:
samples = []
for b in range(self.batch_size):
if i == len(file_list):
i = 0
random.shuffle(file_list)
sample = file_list[i]
i += 1
samples.append(sample)
batch_input = self.get_input_graphs_data(samples)
batch_output = self.get_input_labels(samples)
yield (np.array(batch_input), np.array(batch_output))
def get_dataset_plot_val_generator(self):
i = 0
file_list = self.val_graph_files_name
import random
random.shuffle(file_list)
while True:
samples = []
for b in range(self.batch_size):
if i == len(file_list):
i = 0
random.shuffle(file_list)
sample = file_list[i]
i += 1
samples.append(sample)
batch_input = self.get_input_graphs_data(samples)
batch_output = self.get_input_labels(samples)
yield (np.array(batch_input), np.array(batch_output))
def get_dataset_file_names_generator(self):
import random
i = 0
file_list = self.graph_files_name
random.shuffle(file_list)
while True:
samples = []
for b in range(self.batch_size):
if i == len(file_list):
i = 0
random.shuffle(file_list)
sample = file_list[i]
i += 1
samples.append(sample)
batch_output = self.get_input_labels(samples)
yield (samples, np.array(batch_output))
def get_dataset_raw_generator(self):
i = 0
file_list = self.raw_files_name
import random
random.shuffle(file_list)
while True:
samples = []
for b in range(self.batch_size):
if i == len(file_list):
i = 0
random.shuffle(file_list)
sample = file_list[i]
i += 1
samples.append(sample)
batch_input = self.get_input_raw_data(samples)
batch_output = self.get_input_labels(samples)
print(np.array(batch_input).shape)
yield (np.array(batch_input), np.array(batch_output))
def find_graphs_from_graphs(self, list_filepaths):
ret = []
for el in list_filepaths:
file_name = os.path.splitext(DataParser.path_leaf(el))[0]
folder = os.path.basename(os.path.dirname(os.path.dirname(el)))
ret.append(os.getcwd() + "/data/graphs/" + self.typeFolder + "/" + folder + "/" + self.graph_type + "/" + file_name + ".png")
return ret
def get_audio_files_name(self):
return self.audio_files_name
def get_graph_files_name(self):
return self.graph_files_name
def _get_audio_files_name(self):
entries = []
for folder in self.folders:
files = glob.glob(os.getcwd() + "/data/audio/" + self.typeFolder + "/" + folder + "/*.wav")
entries.extend(files)
return entries
def _get_raw_files_name(self):
entries = []
for folder in self.folders:
files = glob.glob(os.getcwd() + "/data/raw/" + self.typeFolder + "/" + folder + "/" + self.graph_type + "/*.npy")
entries.extend(files)
return entries
def _get_graph_files_name(self):
entries = []
for folder in self.folders:
files = glob.glob(
os.getcwd() + "/data/graphs/" + self.typeFolder + "/" + folder + "/" + self.graph_type + "/*.png")
entries.extend(files)
return entries
def _load_labels(self):
for folder in self.folders:
path = os.getcwd() + "/data/audio/" + self.typeFolder + "/" + folder + "/labels.csv"
with open(path, "r") as f:
lines = f.readlines()
for line in lines:
elements = line.split(",")
if elements[2].strip() != "hasbird":
self.labels[folder + "_" + elements[0]] = int(elements[2].strip())
def get_input_labels(self, files):
labels = []
for file in files:
file_name = os.path.splitext(DataParser.path_leaf(file))[0]
if "_" in file_name:
file_name = file_name.split("_")[0]
if "graphs" in file or "raw" in file:
folder = os.path.basename(os.path.dirname(os.path.dirname(file)))
else:
folder = os.path.basename((os.path.dirname(file)))
if self.labels[folder + "_" + file_name] == 0:
labels.append(0)
else:
labels.append(1)
return labels
@staticmethod
def path_leaf(path):
head, tail = ntpath.split(path)
return tail or ntpath.basename(head)
@staticmethod
def get_input_graphs_data(files):
entries = []
for file in files:
img = image.load_img(file, target_size=(224, 224))
img = image.img_to_array(img)
entries += [img]
return entries
@staticmethod
def get_input_raw_data(files):
entries = []
for file in files:
entries.append(np.load(file, allow_pickle=True))
return entries