-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAudioAugmentation.py
88 lines (71 loc) · 2.65 KB
/
AudioAugmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import librosa
import numpy as np
from common import Utils
class AudioAugmentation:
def __init__(self):
self.random_noise = False
self.additive_noise = 0
self.n_steps = -1
self.bins_per_octave = 12
self.time_stretch_rate = -1
def augment_file(self, file_path):
out, sr = Utils.read_audio_file(file_path)
return self.augment_data(out, sr)
def augment_data(self, data, sr):
if self.time_stretch_rate != -1:
data = AudioAugmentation._time_stretch(data, self.time_stretch_rate, len(data))
if self.additive_noise > 0:
data = AudioAugmentation._add_noise(data, self.additive_noise)
if self.random_noise:
data = AudioAugmentation._add_random_noise(data)
if self.n_steps != -1:
data = AudioAugmentation._pitch_shift(data, sr, self.n_steps, self.bins_per_octave)
# data = data[:int(sr * 1)]
# data = data[np.newaxis, :]
return data
def get_file_label(self):
ret = ""
if self.additive_noise > 0:
ret += "an=" + str(self.additive_noise) + ","
if self.random_noise:
ret += "rn=y" + ","
if self.n_steps != -1:
ret += "ps=y" + ","
if self.time_stretch_rate != -1:
ret += "tsr=" + str(self.time_stretch_rate).replace(".",",")
return ret
def add_random_noise(self):
self.random_noise = True
@staticmethod
def _add_random_noise(data):
noise = np.random.randn(len(data))
data_noise = data + 0.005 * noise
return data_noise
def add_noise(self, noise):
self.additive_noise = noise
@staticmethod
def _add_noise(data, noise):
noise = np.array([noise] * len(data))
data_noise = data + noise
return data_noise
def pitch_shift(self, n_steps, bins_per_octave):
self.n_steps = n_steps
self.bins_per_octave = bins_per_octave
@staticmethod
def _pitch_shift(data, sr, n_steps, bins_per_octave):
return librosa.effects.pitch_shift(data, sr, n_steps=n_steps, bins_per_octave=bins_per_octave)
@staticmethod
def time_shift(data):
return np.roll(data, 1600)
def time_stretch(self, rate):
self.time_stretch_rate = rate
@staticmethod
def _time_stretch(data, rate, input_length):
if input_length is None:
input_length = len(data)
data = librosa.effects.time_stretch(data, rate)
if len(data) > input_length:
data = data[:input_length]
else:
data = np.pad(data, (0, max(0, input_length - len(data))), "constant")
return data