Skip to content

Latest commit

 

History

History

serve

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

Serving

TensorFlow Serving

We can use a TensorFlow docker image to serve the model, so that it replies to GRPC (adjust path and model name as needed).

docker run \
  --rm \
  -p 9000:9000 \
  -v $PWD:/models \
  --name serving \
  --entrypoint tensorflow_model_server \
  tensorflow/serving:1.11.0 --enable_batching=true \
                            --batching_parameters_file=/models/batching_parameters.txt \
                            --port=9000 --model_base_path=/models/export1/1550276061 \
                            --model_name=hncynic

Or on GPU:

nvidia-docker run \
  -d \
  --rm \
  -p 9000:9000 \
  -v $PWD:/models \
  --name serving \
  --entrypoint tensorflow_model_server \
  tensorflow/serving:1.11.0-gpu --enable_batching=true \
                                --batching_parameters_file=/models/batching_parameters.txt \
                                --port=9000 --model_base_path=/models/export1/1550276061 \
                                --model_name=hncynic

Querying

Once the docker container is running, client.py can be used to query the model (adjust paths as needed):

echo Why I Hate Whiteboard Interviews \
  | ./client.py --host=localhost --port=9000 --model_name=hncynic \
                --preprocessor=../data/preprocess.sh \
                --bpe_codes=../exps/data/bpecodes \
                --postprocessor=../data/mosesdecoder/scripts/tokenizer/detokenizer.perl

Output is printed in two columns (tab-separated), where the first column is the title and the second a sampled comment.