{
 "cells": [
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Setup\n",
    "\n",
    "**Step 1**: Import Semantic Kernel SDK from pypi.org"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!python -m pip install semantic-kernel==0.3.10.dev0"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import semantic_kernel as sk\n",
    "\n",
    "kernel = sk.Kernel()"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Option 1: using OpenAI\n",
    "\n",
    "**Step 2**: Add your [Open AI Key](https://openai.com/api/) key to a `.env` file in the same folder (org Id only if you have multiple orgs):\n",
    "\n",
    "```\n",
    "OPENAI_API_KEY=\"sk-...\"\n",
    "OPENAI_ORG_ID=\"\"\n",
    "```\n",
    "\n",
    "and add OpenAI Chat Completion to the kernel:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from semantic_kernel.connectors.ai.open_ai import OpenAIChatCompletion\n",
    "\n",
    "api_key, org_id = sk.openai_settings_from_dot_env()\n",
    "\n",
    "kernel.add_chat_service(\"chat-gpt\", OpenAIChatCompletion(\"gpt-3.5-turbo\", api_key, org_id))"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Option 2: using Azure OpenAI\n",
    "\n",
    "**Step 2**: Add your [Azure Open AI Service key](https://learn.microsoft.com/azure/cognitive-services/openai/quickstart?pivots=programming-language-studio) settings to a `.env` file in the same folder:\n",
    "\n",
    "```\n",
    "AZURE_OPENAI_API_KEY=\"...\"\n",
    "AZURE_OPENAI_ENDPOINT=\"https://...\"\n",
    "AZURE_OPENAI_DEPLOYMENT_NAME=\"...\"\n",
    "```\n",
    "\n",
    "and add Azure OpenAI Chat Completion to the kernel:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion\n",
    "\n",
    "deployment, api_key, endpoint = sk.azure_openai_settings_from_dot_env()\n",
    "\n",
    "kernel.add_chat_service(\"chat_completion\", AzureChatCompletion(deployment, endpoint, api_key))\n"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Run a Semantic Function\n",
    "\n",
    "**Step 3**: Load a Skill and run a semantic function:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "skill = kernel.import_semantic_skill_from_directory(\"../../samples/skills\", \"FunSkill\")\n",
    "joke_function = skill[\"Joke\"]\n",
    "\n",
    "print(joke_function(\"time travel to dinosaur age\"))"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}