-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPPO_HEMS.py
526 lines (363 loc) · 13.9 KB
/
PPO_HEMS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
#!/usr/bin/env python
# coding: utf-8
import gym
import os
from stable_baselines3.common.monitor import Monitor
from stable_baselines3 import PPO
from stable_baselines3 import DDPG
import numpy as np
import torch
SEEDLIST = [10129,10353,22373,54284,35519,40046,75647,66957,85409,92451]
DATASEED = 10
import numpy as np
import torch
def set_seeds(seed):
torch.manual_seed(seed) # Sets seed for PyTorch RNG
torch.cuda.manual_seed_all(seed) # Sets seeds of GPU RNG
np.random.seed(seed=seed) # Set seed for NumPy RNG
random.seed(seed) # Set seed for random RNG
# Define Classes for Loads
class CriticalLoad():
def __init__(self, loadName, powerRating):
self.powerRating = powerRating
self.loadName = loadName
self.isOn = 1
def takeOneTimestep(self):
return self.powerRating
def checkStatus(self):
print(self.loadName)
print("Load Power Rating:", self.powerRating)
print("Load Status:", self.isOn)
class AdjustableLoad():
def __init__(self, loadName, minPowerRating, maxPowerRating, alpha):
self.minPowerRating = minPowerRating
self.maxPowerRating = maxPowerRating
self.powerRating = minPowerRating
self.alpha = alpha
self.loadName = loadName
def setPower(self, powerToBeSet):
if powerToBeSet > self.maxPowerRating:
self.powerRating = self.maxPowerRating
elif powerToBeSet < self.minPowerRating:
self.powerRating = self.minPowerRating
else:
self.powerRating = powerToBeSet
def takeOneTimestep(self):
return self.powerRating
def checkStatus(self):
print(self.loadName)
print("Min Power Rating:", self.minPowerRating)
print("Max Power Rating:", self.maxPowerRating)
print("Current Power Set:", self.powerRating)
print("Alpha", self.alpha)
class ShiftableInterruptible():
def __init__(self, loadName, powerRating, startTime, endTime, requiredHours):
self.loadName = loadName
self.powerRating = powerRating
self.startTime = startTime
self.endTime = endTime
self.requiredHours = requiredHours
self.requiredHoursRemaining = requiredHours
self.isOn = 0
def initiateLoad(self):
if self.requiredHoursRemaining > 0:
self.isOn = 1
else:
print("Already completed todays load usage")
def takeOneTimestep(self):
if self.isOn == 1:
self.requiredHoursRemaining -= 1
print(self.loadName, "is running this hour, required hours remaining today:", self.requiredHoursRemaining)
self.isOn = 0
return self.powerRating
else:
return 0
def resetDay(self):
self.requiredHoursRemaining = self.requiredHours
def checkStatus(self):
print(self.loadName)
print("Power Rating:", self.powerRating)
print("Required Hours per Day:", self.requiredHours)
print("Required Hours Remaining Today:", self.requiredHoursRemaining)
print("Time Allotted for Load:", self.startTime, "to", self.endTime)
class ShiftableUninterruptible():
def __init__(self, loadName, powerRating, startTime, endTime, requiredHours):
self.loadName = loadName
self.powerRating = powerRating
self.startTime = startTime
self.endTime = endTime
self.requiredHours = requiredHours
self.requiredHoursRemaining = requiredHours
self.isOn = 0
def initiateLoad(self):
if self.isOn:
print(self.loadName, "already on")
elif self.requiredHoursRemaining > 0:
self.isOn = 1
else:
print("Already completed todays load usage")
def takeOneTimestep(self):
if self.isOn == 1:
self.requiredHoursRemaining -= 1
print(self.loadName, "is running this hour, required hours remaining today:", self.requiredHoursRemaining)
if self.requiredHoursRemaining == 0:
self.isOn = 0
return self.powerRating
else:
return 0
def resetDay(self):
self.requiredHoursRemaining = self.requiredHours
def checkStatus(self):
print(self.loadName)
print("Power Rating:", self.powerRating)
print("Required Hours per Day:", self.requiredHours)
print("Required Hours Remaining Today:", self.requiredHoursRemaining)
print("Time Allotted for Load:", self.startTime, "to", self.endTime)
# Setting Seeds
import numpy as np
import torch
SEEDLIST = [10129,10353,22373,54284,35519,40046,75647,66957,85409,92451]
DATASEED = 10
def set_seeds(seed):
torch.manual_seed(seed) # Sets seed for PyTorch RNG
torch.cuda.manual_seed_all(seed) # Sets seeds of GPU RNG
np.random.seed(seed=seed) # Set seed for NumPy RNG
random.seed(seed) # Set seed for random RNG
# Define Loads
import tomli
with open("home.toml", "rb") as f:
toml_dict = tomli.load(f)
for key in toml_dict:
print(key, toml_dict[key])
fridge = CriticalLoad(toml_dict["CR"][0]["id"], toml_dict["CR"][0]["P"])
alarm = CriticalLoad(toml_dict["CR"][1]["id"], toml_dict["CR"][1]["P"])
heater = AdjustableLoad(toml_dict["AD"][0]["id"],toml_dict["AD"][0]["Pmin"], toml_dict["AD"][0]["Pmax"], toml_dict["AD"][0]["α"])
aircon1 = AdjustableLoad(toml_dict["AD"][1]["id"],toml_dict["AD"][1]["Pmin"], toml_dict["AD"][1]["Pmax"], toml_dict["AD"][1]["α"])
aircon2 = AdjustableLoad(toml_dict["AD"][2]["id"],toml_dict["AD"][2]["Pmin"], toml_dict["AD"][2]["Pmax"], toml_dict["AD"][2]["α"])
washingMachine = ShiftableUninterruptible(toml_dict["SU"][0]["id"], toml_dict["SU"][0]["P"], toml_dict["SU"][0]["ts"], toml_dict["SU"][0]["tf"], toml_dict["SU"][0]["L"])
dishWasher = ShiftableUninterruptible(toml_dict["SU"][1]["id"], toml_dict["SU"][1]["P"], toml_dict["SU"][1]["ts"], toml_dict["SU"][1]["tf"], toml_dict["SU"][1]["L"])
electricVehicle = ShiftableInterruptible(toml_dict["SI"][0]["id"], toml_dict["SI"][0]["P"], toml_dict["SI"][0]["ts"], toml_dict["SI"][0]["tf"], toml_dict["SI"][0]["L"])
loadList = [fridge, alarm, heater, aircon1, aircon2, washingMachine, dishWasher, electricVehicle]
for load in loadList:
load.checkStatus()
print("\n")
# Define Scenarios
import numpy as np
data2019 = np.load('2019.npy')
data2020 = np.load('2020.npy')
data2021 = np.load('2021.npy')
data2019and2020 =np.concatenate((data2019, data2020), axis=2)
allData = np.concatenate((data2019and2020, data2021), axis=2)
print("2019", data2019.shape)
print("2020", data2020.shape)
print("2021", data2021.shape)
print("2019 and 2020", data2019and2020.shape)
import random
random.seed(10)
#Extract Validation Set, 10 percent
validation = random.sample(range(365+366), 70)
validationSet = []
trainingSet = []
trainingFullSet = []
for i in range(365+366):
trainingFullSet.append(data2019and2020[:,0,i])
if i in validation:
validationSet.append(data2019and2020[:,0,i])
else:
trainingSet.append(data2019and2020[:,0,i])
validationData = np.asarray(validationSet)
trainingData = np.asarray(trainingSet)
trainingFullData = np.asarray(trainingFullSet)
print(validationData.shape)
print(trainingData.shape)
testingSet = data2021[:,0,:]
testingData = np.transpose(testingSet)
print(testingData.shape)
allDataTemp = allData[:,0,:]
allDataProcessed = np.transpose(allDataTemp)
print(allDataProcessed.shape)
#solar data
solarTestingSet = data2021[:,1,:]
solarTestingData = np.transpose(solarTestingSet)
print(solarTestingData.shape)
solarTrainingSet = data2019and2020[:,1,:]
solarTrainingData = np.transpose(solarTrainingSet)
print(solarTrainingData.shape)
print(np.min(validationData), np.max(validationData))
print(np.min(trainingData), np.max(trainingData))
print(np.min(testingData), np.max(testingData))
print(len(trainingData))
trainingData[1]
# Pipeline Adjustable Load
import gym
from gym import spaces
class CustomEnv(gym.Env):
"""Custom Environment that follows gym interface"""
# metadata = {'render.modes': ['human']}
def __init__(self, load, set):
super(CustomEnv, self).__init__()
self.load = load
self.solar = None
self.price = [0.1061027 , 0.10518237, 0.10348876, 0.1025972 , 0.10004596,
0.10728957, 0.14616401, 0.14855754, 0.13336482, 0.14566902,
0.13109758, 0.13705286, 0.20942042, 0.13099825, 0.12543957,
0.12171211, 0.15030475, 0.15189125, 0.13866458, 0.13601246,
0.13050256, 0.11916902, 0.11551519, 0.11015341]
self.set = set
if set == "training":
self.price = trainingData[0]
elif set == "validation":
self.price = validationData[0]
elif set == "testing":
self.price = testingData[0]
else:
print("No set specified, will use dummy price data")
self.hour = 0
self.episodeCount = 0
self.scenario = None
#we define the action space: loadDispatch
self.action_space = spaces.Box(low = np.array([self.load.minPowerRating]), high = np.array([self.load.maxPowerRating]))
# we define the state space: price
self.observation_space = spaces.Box(low=np.array([0]), high=np.array([999]))
def step(self, action):
powerSet = action[0]
reward = -1 * (self.price[self.hour] * powerSet + self.load.alpha*(self.load.maxPowerRating - powerSet)**2)
#done flagged only when its the last hour of the day
done = False
if self.hour >= 23:
done = True
self.episodeCount += 1
#info is always set to nothing
info = {}
#update the hour so the next data is corret, but for the last piece of data we dont wanna overflow
self.hour += 1
if done:
self.hour -= 1
observation = [999]
return np.array(observation), reward, done, info
def reset(self):
if self.set == "training":
exampleX = random.randint(0,len(trainingData)-1)
self.price = trainingData[exampleX]
elif self.set == "validation":
self.price = validationData[self.episodeCount%len(validationData)]
elif self.set == "testing":
self.price = testingData[self.episodeCount%len(testingData)]
else:
print("No set specified, will use dummy price data")
#initial solar, wind, totalLoads, price, SOC
observation = [self.price[0]]
self.hour = 0
return np.array(observation) # reward, done, info can't be included
from stable_baselines3.common.env_checker import check_env
env = CustomEnv(heater, "training")
check_env(env)
# Heater
import gym
import os
from stable_baselines3.common.monitor import Monitor
from stable_baselines3 import PPO
from stable_baselines3 import DDPG
# SET SEED HERE
set_seeds(22373)
env = CustomEnv(heater, "training")
env = Monitor(env, "heaterEnv")
model = PPO("MlpPolicy", env, verbose=0)
validationCostArray = []
for episode in range(1500):
#train first on one training episode
print("training heater" , "episode", episode)
env.reset()
model.learn(total_timesteps=24)
validationTotalCost = 0
#then check cost on validation set
for validationScenario in range(70):
envValidation = CustomEnv(heater, "validation")
obs = envValidation.reset()
episodeReward = 0
while True:
action, _states = model.predict(obs)
obs, rewards, dones, info = envValidation.step(action)
# print(obs, rewards, dones, info)
episodeReward += rewards
if dones == True:
break
validationTotalCost += episodeReward
validationCostArray.append(validationTotalCost/70)
print("Average Cost on Validation Set:", str(validationTotalCost/70))
np.savetxt('PPO_Heater_22373_validationCost.txt', np.asarray(validationCostArray), delimiter=',')
model.save("PPO_Heater_22373")
# Aircon1
import gym
import os
from stable_baselines3.common.monitor import Monitor
from stable_baselines3 import PPO
from stable_baselines3 import DDPG
#SET SEED HERE
set_seeds(10129)
# set_seeds(10353)
# set_seeds(22373)
env = CustomEnv(aircon1, "training")
env = Monitor(env, "aircon1Env")
model = PPO("MlpPolicy", env, verbose=0)
validationCostArray = []
for episode in range(1500):
#train first on one training episode
print("training aircon1" , "episode", episode)
env.reset()
model.learn(total_timesteps=24)
validationTotalCost = 0
#then check cost on validation set
for validationScenario in range(70):
envValidation = CustomEnv(aircon1, "validation")
obs = envValidation.reset()
episodeReward = 0
while True:
action, _states = model.predict(obs)
obs, rewards, dones, info = envValidation.step(action)
# print(obs, rewards, dones, info)
episodeReward += rewards
if dones == True:
break
validationTotalCost += episodeReward
validationCostArray.append(validationTotalCost/70)
print("Average Cost on Validation Set:", str(validationTotalCost/70))
np.savetxt('PPO_Aircon1_10129_validationCost.txt', np.asarray(validationCostArray), delimiter=',')
model.save("PPO_Aircon1_10129")
# Aircon2
import gym
import os
from stable_baselines3.common.monitor import Monitor
from stable_baselines3 import PPO
from stable_baselines3 import DDPG
#SET SEED HERE
set_seeds(10129)
# set_seeds(10353)
# set_seeds(22373)
env = CustomEnv(aircon2, "training")
env = Monitor(env, "aircon2Env")
model = PPO("MlpPolicy", env, verbose=0)
validationCostArray = []
for episode in range(1500):
#train first on one training episode
print("training aircon2" , "episode", episode)
env.reset()
model.learn(total_timesteps=24)
validationTotalCost = 0
#then check cost on validation set
for validationScenario in range(70):
envValidation = CustomEnv(aircon2, "validation")
obs = envValidation.reset()
episodeReward = 0
while True:
action, _states = model.predict(obs)
obs, rewards, dones, info = envValidation.step(action)
# print(obs, rewards, dones, info)
episodeReward += rewards
if dones == True:
break
validationTotalCost += episodeReward
validationCostArray.append(validationTotalCost/70)
print("Average Cost on Validation Set:", str(validationTotalCost/70))
np.savetxt('PPO_Aircon2_10129_validationCost.txt', np.asarray(validationCostArray), delimiter=',')
model.save("PPO_Aircon2_10129")