Skip to content

Latest commit

 

History

History
52 lines (41 loc) · 2.44 KB

SqueezeSegV2.md

File metadata and controls

52 lines (41 loc) · 2.44 KB

Robo3D Benchmark

The following metrics are consistently used in our benchmark:

  • Mean Corruption Error (mCE):

    • The Corruption Error (CE) for model $A$ under corruption type $i$ across 3 severity levels is: $\text{CE}_i^{\text{Model}A} = \frac{\sum((1 - \text{mIoU})^{\text{Model}A})}{\sum((1 - \text{mIoU})^{\text{Baseline}})}$.
    • The average CE for model $A$ on all $N$ corruption types, i.e., mCE, is calculated as: $\text{mCE} = \frac{1}{N}\sum\text{CE}_i$.
  • Mean Resilience Rate (mRR):

    • The Resilience Rate (RR) for model $A$ under corruption type $i$ across 3 severity levels is: $\text{RR}_i^{\text{Model}A} = \frac{\sum(\text{mIoU}^{\text{Model}A})}{3\times (\text{clean-mIoU}^{\text{Model}A})} .$
    • The average RR for model $A$ on all $N$ corruption types, i.e., mRR, is calculated as: $\text{mRR} = \frac{1}{N}\sum\text{RR}_i$.

SqueezeSegV2

SemanticKITTI-C

Corruption Light Moderate Heavy Average $\text{CE}_i$ $\text{RR}_i$
Fog 27.12 25.61 24.18 25.64 168.50 62.11
Wet Ground 38.65 33.51 32.89 35.02 141.23 84.84
Snow 26.44 27.86 28.95 27.75 154.64 67.22
Motion Blur 24.86 22.63 20.77 22.75 115.16 55.11
Beam Missing 37.78 32.21 26.58 32.19 155.24 77.98
Crosstalk 29.06 26.56 24.42 26.68 176.00 64.63
Incomplete Echo 35.05 34.06 32.28 33.80 145.27 81.88
Cross-Sensor 15.99 11.08 8.27 11.78 163.52 28.54
  • Summary: $\text{mIoU}_{\text{clean}} =$ 41.28%, $\text{mCE} =$ 152.45%, $\text{mRR} =$ 65.29%.

References

@inproceedings{wu2017squeezeseg,
  title = {SqueezeSegV2: Improved Model Structure and Unsupervised Domain Adaptation for Road-Object Segmentation from a LiDAR Point Cloud},
  author = {Wu, Bichen and Zhou, Xuanyu and Zhao, Sicheng and Yue, Xiangyu and Keutzer, Kurt},
  booktitle = {IEEE International Conference on Robotics and Automation},
  year = {2019},
}
@inproceedings{milioto2019rangenet,
  title = {RangeNet++: Fast and Accurate LiDAR Semantic Segmentation},
  author = {A. Milioto and I. Vizzo and J. Behley and C. Stachniss},
  booktitle = {IEEE/RSJ International Conference on Intelligent Robots and Systems},
  year = {2019},
}