Skip to content

Latest commit

 

History

History
52 lines (41 loc) · 2.41 KB

SqueezeSeg.md

File metadata and controls

52 lines (41 loc) · 2.41 KB

Robo3D Benchmark

The following metrics are consistently used in our benchmark:

  • Mean Corruption Error (mCE):

    • The Corruption Error (CE) for model $A$ under corruption type $i$ across 3 severity levels is: $\text{CE}_i^{\text{Model}A} = \frac{\sum((1 - \text{mIoU})^{\text{Model}A})}{\sum((1 - \text{mIoU})^{\text{Baseline}})}$.
    • The average CE for model $A$ on all $N$ corruption types, i.e., mCE, is calculated as: $\text{mCE} = \frac{1}{N}\sum\text{CE}_i$.
  • Mean Resilience Rate (mRR):

    • The Resilience Rate (RR) for model $A$ under corruption type $i$ across 3 severity levels is: $\text{RR}_i^{\text{Model}A} = \frac{\sum(\text{mIoU}^{\text{Model}A})}{3\times (\text{clean-mIoU}^{\text{Model}A})} .$
    • The average RR for model $A$ on all $N$ corruption types, i.e., mRR, is calculated as: $\text{mRR} = \frac{1}{N}\sum\text{RR}_i$.

SqueezeSeg

SemanticKITTI-C

Corruption Light Moderate Heavy Average $\text{CE}_i$ $\text{RR}_i$
Fog 20.21 18.62 17.72 18.85 183.89 59.63
Wet Ground 29.07 26.51 26.33 27.30 158.01 86.37
Snow 21.79 22.74 23.57 22.70 165.45 71.81
Motion Blur 19.52 17.86 16.42 17.93 122.35 56.72
Beam Missing 28.67 24.92 21.44 25.01 171.68 79.12
Crosstalk 23.08 21.58 20.30 21.65 188.07 68.49
Incomplete Echo 28.22 27.85 26.90 27.66 158.74 87.50
Cross-Sensor 10.45 8.07 5.04 7.85 170.81 24.83
  • Summary: $\text{mIoU}_{\text{clean}} =$ 31.61%, $\text{mCE} =$ 164.87%, $\text{mRR} =$ 66.81%.

References

@inproceedings{wu2017squeezeseg,
  title = {Squeezeseg: Convolutional Neural Nets with Recurrent CRF for Real-Time Road-Object Segmentation from 3D LiDAR Point Cloud},
  author = {Wu, Bichen and Wan, Alvin and Yue, Xiangyu and Keutzer, Kurt},
  booktitle = {IEEE International Conference on Robotics and Automation},
  year = {2018},
}
@inproceedings{milioto2019rangenet,
  title = {RangeNet++: Fast and Accurate LiDAR Semantic Segmentation},
  author = {A. Milioto and I. Vizzo and J. Behley and C. Stachniss},
  booktitle = {IEEE/RSJ International Conference on Intelligent Robots and Systems},
  year = {2019},
}