The following metrics are consistently used in our benchmark:
-
Mean Corruption Error (mCE):
- The Corruption Error (CE) for model
$A$ under corruption type$i$ across 3 severity levels is:$\text{CE}_i^{\text{Model}A} = \frac{\sum((1 - \text{mIoU})^{\text{Model}A})}{\sum((1 - \text{mIoU})^{\text{Baseline}})}$ . - The average CE for model
$A$ on all$N$ corruption types, i.e., mCE, is calculated as:$\text{mCE} = \frac{1}{N}\sum\text{CE}_i$ .
- The Corruption Error (CE) for model
-
Mean Resilience Rate (mRR):
- The Resilience Rate (RR) for model
$A$ under corruption type$i$ across 3 severity levels is:$\text{RR}_i^{\text{Model}A} = \frac{\sum(\text{mIoU}^{\text{Model}A})}{3\times (\text{clean-mIoU}^{\text{Model}A})} .$ - The average RR for model
$A$ on all$N$ corruption types, i.e., mRR, is calculated as:$\text{mRR} = \frac{1}{N}\sum\text{RR}_i$ .
- The Resilience Rate (RR) for model
Corruption | Light | Moderate | Heavy | Average | ||
---|---|---|---|---|---|---|
Fog | 33.35 | 30.88 | 28.88 | 31.04 | 156.27 | 65.83 |
Wet Ground | 45.06 | 39.38 | 38.19 | 40.88 | 128.49 | 86.70 |
Snow | 36.15 | 37.44 | 38.69 | 37.43 | 133.93 | 79.38 |
Motion Blur | 34.27 | 31.04 | 28.17 | 31.16 | 102.62 | 66.09 |
Beam Missing | 44.10 | 38.51 | 31.87 | 38.16 | 141.58 | 80.93 |
Crosstalk | 39.66 | 37.99 | 36.28 | 37.98 | 148.87 | 80.55 |
Incomplete Echo | 42.85 | 41.81 | 39.97 | 41.54 | 128.29 | 88.10 |
Cross-Sensor | 27.16 | 21.74 | 7.39 | 18.76 | 150.58 | 39.79 |
-
Summary:
$\text{mIoU}_{\text{clean}} =$ 47.15%,$\text{mCE} =$ 136.33%,$\text{mRR} =$ 73.42%.
@inproceedings{milioto2019rangenet,
title = {RangeNet++: Fast and Accurate LiDAR Semantic Segmentation},
author = {A. Milioto and I. Vizzo and J. Behley and C. Stachniss},
booktitle = {IEEE/RSJ International Conference on Intelligent Robots and Systems},
year = {2019},
}