Skip to content

Latest commit

 

History

History
44 lines (33 loc) · 2.03 KB

GFNet.md

File metadata and controls

44 lines (33 loc) · 2.03 KB

Robo3D Benchmark

The following metrics are consistently used in our benchmark:

  • Mean Corruption Error (mCE):

    • The Corruption Error (CE) for model $A$ under corruption type $i$ across 3 severity levels is: $\text{CE}_i^{\text{Model}A} = \frac{\sum((1 - \text{mIoU})^{\text{Model}A})}{\sum((1 - \text{mIoU})^{\text{Baseline}})}$.
    • The average CE for model $A$ on all $N$ corruption types, i.e., mCE, is calculated as: $\text{mCE} = \frac{1}{N}\sum\text{CE}_i$.
  • Mean Resilience Rate (mRR):

    • The Resilience Rate (RR) for model $A$ under corruption type $i$ across 3 severity levels is: $\text{RR}_i^{\text{Model}A} = \frac{\sum(\text{mIoU}^{\text{Model}A})}{3\times (\text{clean-mIoU}^{\text{Model}A})} .$
    • The average RR for model $A$ on all $N$ corruption types, i.e., mRR, is calculated as: $\text{mRR} = \frac{1}{N}\sum\text{RR}_i$.

GFNet

SemanticKITTI-C

Corruption Light Moderate Heavy Average $\text{CE}_i$ $\text{RR}_i$
Fog 46.57 46.33 33.23 42.04 131.34 66.73
Wet Ground 59.30 55.89 54.53 56.57 94.39 89.79
Snow 55.76 56.81 57.57 56.71 92.66 90.02
Motion Blur 60.25 58.54 56.97 58.59 61.73 93.00
Beam Missing 60.91 57.01 52.93 56.95 98.56 90.40
Crosstalk 22.59 16.23 12.61 17.14 198.90 27.21
Incomplete Echo 58.70 55.55 51.43 55.23 98.24 87.67
Cross-Sensor 58.40 52.70 37.35 49.48 93.64 78.54
  • Summary: $\text{mIoU}_{\text{clean}} =$ 63.00%, $\text{mCE} =$ 108.68%, $\text{mRR} =$ 77.92%.

References

@inproceedings{qiu2022gfnet,
  title = {GFNet: Geometric Flow Network for 3D Point Cloud Semantic Segmentation},
  author = {Haibo Qiu and Baosheng Yu and Dacheng Tao},
  booktitle = {Transactions on Machine Learning Research},
  year = {2022},
}