The following metrics are consistently used in our benchmark:
-
Mean Corruption Error (mCE):
- The Corruption Error (CE) for model
$A$ under corruption type$i$ across 3 severity levels is:$\text{CE}_i^{\text{Model}A} = \frac{\sum((1 - \text{mIoU})^{\text{Model}A})}{\sum((1 - \text{mIoU})^{\text{Baseline}})}$ . - The average CE for model
$A$ on all$N$ corruption types, i.e., mCE, is calculated as:$\text{mCE} = \frac{1}{N}\sum\text{CE}_i$ .
- The Corruption Error (CE) for model
-
Mean Resilience Rate (mRR):
- The Resilience Rate (RR) for model
$A$ under corruption type$i$ across 3 severity levels is:$\text{RR}_i^{\text{Model}A} = \frac{\sum(\text{mIoU}^{\text{Model}A})}{3\times (\text{clean-mIoU}^{\text{Model}A})} .$ - The average RR for model
$A$ on all$N$ corruption types, i.e., mRR, is calculated as:$\text{mRR} = \frac{1}{N}\sum\text{RR}_i$ .
- The Resilience Rate (RR) for model
Corruption | Light | Moderate | Heavy | Average | ||
---|---|---|---|---|---|---|
Fog | 46.57 | 46.33 | 33.23 | 42.04 | 131.34 | 66.73 |
Wet Ground | 59.30 | 55.89 | 54.53 | 56.57 | 94.39 | 89.79 |
Snow | 55.76 | 56.81 | 57.57 | 56.71 | 92.66 | 90.02 |
Motion Blur | 60.25 | 58.54 | 56.97 | 58.59 | 61.73 | 93.00 |
Beam Missing | 60.91 | 57.01 | 52.93 | 56.95 | 98.56 | 90.40 |
Crosstalk | 22.59 | 16.23 | 12.61 | 17.14 | 198.90 | 27.21 |
Incomplete Echo | 58.70 | 55.55 | 51.43 | 55.23 | 98.24 | 87.67 |
Cross-Sensor | 58.40 | 52.70 | 37.35 | 49.48 | 93.64 | 78.54 |
-
Summary:
$\text{mIoU}_{\text{clean}} =$ 63.00%,$\text{mCE} =$ 108.68%,$\text{mRR} =$ 77.92%.
@inproceedings{qiu2022gfnet,
title = {GFNet: Geometric Flow Network for 3D Point Cloud Semantic Segmentation},
author = {Haibo Qiu and Baosheng Yu and Dacheng Tao},
booktitle = {Transactions on Machine Learning Research},
year = {2022},
}