Glaciology EESCGU4220

Lecture 7: Basal slip

Glaciers slide:

How do we know?

What controls how fast this happens?

How do we model slip?

Implications?

https://www.youtube.com/watch?v=njTjfJcAsBg

"Sliding" and "basal slip"

$$u(z) = u_{sia} \left(1 - \left(1 - \frac{z}{H} \right)^{n+1} \right)$$

$$u(z) = u_b + u_{sia} \left(1 - \left(1 - \frac{z}{H} \right)^{n+1} \right)$$

"Sliding" and "basal slip"

1. Direct observations

50-70% was slip, the rest was sediment deformation.

Blake et al. (1994)

Chris Clark's website: https://www.sheffield.ac.uk/drumlins/drumlins

Chris Clark's website: https://www.sheffield.ac.uk/drumlins/drumlins

Chris Clark's website: https://www.sheffield.ac.uk/drumlins/drumlins

King et al. (2009)

3. Inversions

3. Inversions

3. Inversions

Figure 11. The ratio of flow speed at the bed to flow speed at the surface of the ice sheet.

$$u_b = \frac{\tau_b}{\psi}$$

what controls basal SIIp?
$$u_b = \frac{\tau_b}{\psi} \text{ Approx. equal to driving stress: } \tau_d = \rho g H \frac{\partial H}{\partial x}$$

$$u_b = \frac{\tau_b}{\psi}$$

$$\tau_b = 120 \text{ kPa}$$
$$u_b = 6 \text{ m yr}^{-1}$$

$$\psi = 20 \ \frac{\text{kP}a}{\text{m yr}^{-1}}$$

Glacier d' Arolla, Switzerland

$$u_b = \frac{\tau_b}{\psi}$$

$$\tau_b = 130 \text{ kPa}$$

 $u_b = 90 \text{ m yr}^{-1}$

$$\psi = 1 \frac{kPa}{m \text{ yr}^{-1}}$$

$$u_b = \frac{\tau_b}{\psi}$$

$$\tau_b = 130 \text{ kPa}$$

 $u_b = 90 \text{ m yr}^{-1}$

$$\psi = 1 \frac{\mathrm{KP}a}{\mathrm{m}\,\mathrm{yr}^{-1}}$$

Variegated Glacier, Alaska

$$\tau_b = 130 \text{ kPa}$$
 $u_b = 4800 \text{ m yr}^{-1}$
 $\psi = 0.03 \frac{\text{kP}a}{\text{m yr}^{-1}}$

Lecture 7: Basal Slip Austin Post, 1965

$$u_b = \frac{\tau_b}{\psi}$$

$$\tau_b = 130 \text{ kPa}$$
 $u_b = 90 \text{ m yr}^{-1}$

$$\psi = 1 \frac{kPa}{m \, yr^{-1}}$$

Variegated Glacier, Alaska

$$\tau_b = 130 \text{ kPa}
u_b = 90 \text{ m yr}^{-1}$$
 $\psi = 1 \frac{\text{kP}a}{\text{m yr}^{-1}}$
 $\tau_b = 130 \text{ kPa}
u_b = 4800 \text{ m yr}^{-1}$
 $\psi = 0.03 \frac{\text{kP}a}{\text{m yr}^{-1}}$

Lecture 7: Basal Slip Austin Post, 1965

Hard glacier beds

ICE

- Assume we are at the melting point everywhere.
- Assume no cavitation
- Assume thin water film at ice rock interface.

Two mechanisms:

Regelation: temperature gradient across bumps causes heat flow and melting/re-freezing

Higher stress on the upstream side also causes **enhanced creep**.

Regelation demo:

https://www.youtube.com/watch?v=qQCVnjGUv24

Basal shear stress: τ_b

Force on each cube: $\tau_b \lambda^2$

Sliding speed due to regelation

Regelation

Force on each cube = $\tau_b \lambda^2$

Regelation

Force on each cube = $\tau_b \lambda^2$

Force on each side of the cube = $\frac{1}{2}\tau_b\lambda^2$

Regelation

Force on each cube = $\tau_b \lambda^2$

Force on each side of the cube = $\frac{1}{2}\tau_b\lambda^2$

Stress on each side of the cube = $\frac{1}{2}\tau_b \left(\frac{\lambda}{a}\right)^2$

Regelation

Total differential stress across each cube = $\tau_b \left(\frac{\lambda}{a}\right)^2$

Regelation

 $\ensuremath{\mathcal{B}}$ is the dependence of the melting point of water on pressure.

= $9.8 \times 10^{-5} \text{ K kPa}^{-1}$ (= $8.7 \times 10^{-4} \text{ Km}^{-1} \text{ in ice}$)

Total differential stress across each cube = $\tau_b \left(\frac{\lambda}{a}\right)^2$

Melting point is a function of stress, so difference in T across the cube is $\delta T = \mathcal{B}\tau_b \left(\frac{\lambda}{a}\right)^2$

Regelation

k is thermal conductivity of the rock.

...and heat flow through the cube =
$$ak\mathcal{B}\tau_b\left(\frac{\lambda}{a}\right)^2$$

 a^2 = Cross-sectional area

Heat flux per unit cross-sectional area, $q=k\frac{dT}{dx}$, so total heat flux is $k\frac{a^2\delta T}{a}=k\delta Ta=ak\mathcal{B}\tau_b\left(\frac{\lambda}{a}\right)^2$

Distance over which temperature gradient acts

Regelation

L is the latent heat of fusion of water.

...and heat flow through the cube =
$$ak\mathcal{B}\tau_b\left(\frac{\lambda}{a}\right)^2$$

Volume of ice melted per unit time due to this heat is

$$\dot{m} = \frac{akB\tau_b}{\rho_i L} \left(\frac{\lambda}{a}\right)^2$$

Regelation

...and heat flow through the cube = $ak\mathcal{B}\tau_b\left(\frac{\lambda}{a}\right)^2$

Volume of ice melted per unit time due to this heat is

$$\dot{m} = \frac{akB\tau_b}{\rho_i L} \left(\frac{\lambda}{a}\right)^2$$

But flow rate is controlled by the melt rate so $\dot{m} = u_R a^2$

Regelation

$$u_R a^2 = \frac{ak\mathcal{B}\tau_b}{\rho_i L} \left(\frac{\lambda}{a}\right)^2 \qquad \qquad \Box$$

$$u_R = \frac{kB\tau_b}{a\rho_i L} \left(\frac{\lambda}{a}\right)^2$$

Sliding speed due to enhanced creep

Enhanced Creep

Stress on each side of the cube =
$$\frac{1}{2}\tau_b \left(\frac{\lambda}{a}\right)^2$$

Enhanced Creep

Stress on each side of the cube = $\frac{1}{2}\tau_b \left(\frac{\lambda}{a}\right)^2$

Generates a strain rate
$$\propto A \left[\tau_b \left(\frac{\lambda}{a} \right)^2 \right]^n$$

Enhanced Creep

Stress on each side of the cube =
$$\frac{1}{2}\tau_b \left(\frac{\lambda}{a}\right)^2$$

Generates a strain rate
$$\propto A \left[\tau_b \left(\frac{\lambda}{a} \right)^2 \right]^n$$

We assume the strain occurs over a length scale a, so:

$$u_E \propto aA \left[\tau_b \left(\frac{\lambda}{a} \right)^2 \right]^n$$

Regelation

$$u_R = \frac{k\mathcal{B}\tau_b}{a\rho_i L} \left(\frac{\lambda}{a}\right)^2$$

Enhanced Creep

$$u_E \propto aA \left[\tau_b \left(\frac{\lambda}{a}\right)^2\right]^n$$

For a given obstacle size: $u_b = \max(u_R, u_E)$

But there is a whole range of obstacle sizes, so one obstacle size controls the sliding speed

Equate these and re-arrange for the critical obstacle size, a_c :

$$a^2 \propto \frac{k\mathcal{B}\tau_b^{1-n}R^{2(n-1)}}{\rho_i LA}$$

$$u_R = \frac{k\mathcal{B}\tau_b}{a\rho_i L} \left(\frac{\lambda}{a}\right)^2$$

Equal these and re-arrange for the critical obstacle size, a_c :

$$a^2 \propto \frac{k\mathcal{B}\tau_b^{1-n}R^{2(n-1)}}{\rho_i LA}$$

Substituting back into the regelation equation (above) gives:

$$u_b \propto \left(\frac{\sqrt{\tau_b}}{R}\right)^{n+1}$$

$$R = \frac{\lambda}{a}$$

Assumptions are restrictive and this is a crude model, but it captures some essence of the processes.

Cavitation

N is the effective pressure = $p_i - p_w$

Where water pressure is high enough, water filled cavities form.

 $u_b \propto \frac{\tau_b^p}{RN^q}$

This increases sliding....

Sharp et al, (1989)

Iken's bound

Iken (1981)

Shear stress generated at the bed cannot exceed some bound because cavities grow so much that they start drowning smaller ones downstream

Gagliardini et al. (2007)

"Soft beds":

deformable material under the ice.

Zone of high water pressure and de-coupling WES: Water escape structure

Modified from Kjær et al. (2006)

"Soft beds":

deformable material under the ice.

Modified from Kjær et al. (2006)

Mohr-Coulomb sliding

Cuffey and Paterson

Lecture 7: Basal Slip

Mohr-Coulomb sliding

Residual stress

$$\tau_* = c_0 + fN$$

Effective pressure

$$N = P_i - P_w$$

Cuffey and Paterson

Mohr-Coulomb sliding

Residual stress

Effective pressure

$$\tau_* = c_0 + fN$$

$$N = P_i - P_w$$

Very different behavior than "Weertman-style" sliding.

Much current research is aimed at understanding which of these are 'correct'.

Cuffey and Paterson

Implications

- Temperature at the base controls ice flux by determining if slip occurs.
- Water at the bed controls ice flux by determining how fast slip occurs.
- Glaciers erode and move sediment, modifying the landscape.

Van Liefferinge and Pattyn (2013)

Implications

- Temperature at the base controls ice flux by determining if slip occurs.
- Water at the bed controls ice flux by determining how fast slip occurs.
- Glaciers erode and move sediment, modifying the landscape.

Implications

- Temperature at the base controls ice flux by determining if slip occurs.
- Water at the bed controls ice flux by determining how fast slip occurs.
- Glaciers erode and move sediment, modifying the landscape.

Major questions remain

- Which areas of the bed behave plastically and which behave like Weertman's model? (If these models are even good descriptions of sliding)
- How are water pressures and sliding speed coupled, quantitatively?
- How will the sliding relation evolve in time as ice sheets accelerate and thin?

Summary

- Glaciers slide over their beds.
- Over hard beds, without cavitation, Weertman's sliding model predicts sliding depends on $\tau_b^{\frac{n+1}{2}}$
- Cavitation increases sliding, introduces a dependence on water pressure and in theory can cause unstable sliding.
- Soft beds appear to be plastic, with the resistance provided by the bed not depending on sliding speed.

References

- Arthern, R.J., Hindmarsh, R.C. and Williams, C.R., 2015. Flow speed within the Antarctic ice sheet and its controls inferred from satellite observations. *Journal of Geophysical Research: Earth Surface*, 120(7), pp.1171-1188.
- Blake, W., Fischer, U.H., Bentley, C.R. and Clarke, G.K., 1994. Instruments and Methods: Direct measurement of sliding at the glacier bed. *Journal of Glaciology*, 40(136), pp.595-599.
- Gagliardini, O., Cohen, D., Råback, P. and Zwinger, T., 2007. Finite-element modeling of subglacial cavities and related friction law. *Journal of Geophysical Research: Earth Surface*, 112(F2).
- King, E.C., Hindmarsh, R.C. and Stokes, C.R., 2009. Formation of mega-scale glacial lineations observed beneath a West Antarctic ice stream. *Nature Geoscience*, 2(8), p.585.
- Schoof, C., 2005, March. The effect of cavitation on glacier sliding. In *Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences* (Vol. 461, No. 2055, pp. 609-627). The Royal Society.
- Sharp, M., Gemmell, J.C. and Tison, J.L., 1989. Structure and stability of the former subglacial drainage system of the Glacier de Tsanfleuron, Switzerland. *Earth Surface Processes and Landforms*, 14(2), pp.119-134.
- Van Liefferinge, B. and Pattyn, F., 2013. Using ice-flow models to evaluate potential sites of million year-old ice in Antarctica. *Climate of the Past*, 9(5), p.2335.