-
Notifications
You must be signed in to change notification settings - Fork 0
/
week6.nb
8921 lines (8846 loc) · 483 KB
/
week6.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 10.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 494366, 8912]
NotebookOptionsPosition[ 488296, 8761]
NotebookOutlinePosition[ 492182, 8846]
CellTagsIndexPosition[ 492139, 8843]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[{
RowBox[{
RowBox[{"Clear", "[", "enhancedGRN3", "]"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"enhancedGRN3", "[",
RowBox[{"k1tx_", ",", "k1ctx_", ",",
RowBox[{"Gtot_:", "10"}], ",",
RowBox[{"kf_:", "400"}], ",",
RowBox[{"kr_:", "125"}], ",",
RowBox[{"tmax_:", "100"}], ",",
RowBox[{"kc_:", "1000"}], ",",
RowBox[{"ktl_:", "1.0"}], ",",
RowBox[{"kpd_:", "1.0"}], ",",
RowBox[{"krd_:", "5.0"}]}], "]"}], ":=", "\[IndentingNewLine]",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{
"null", ",", "G1", ",", "T1", ",", "R1", ",", "G1c", ",", "T1c", ",",
"C1", ",", "sol", ",", "rsys", ",", "G1f", ",", "R1G1f"}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{
RowBox[{"rsys", "=",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"Genelet", " ", "R1"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"rxn", "[",
RowBox[{"G1", ",",
RowBox[{"G1", "+", "T1"}], ",", "k1tx"}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"rxn", "[",
RowBox[{"T1", ",",
RowBox[{"T1", "+", "R1"}], ",", "ktl"}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"rxn", "[",
RowBox[{"T1", ",", "null", ",", "krd"}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"rxn", "[",
RowBox[{"R1", ",", "null", ",", "kpd"}], "]"}], ",",
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"Genelet", " ", "C1"}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{"rxn", "[",
RowBox[{"G1c", ",",
RowBox[{"G1c", "+", "T1c"}], ",", "k1ctx"}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"rxn", "[",
RowBox[{"T1c", ",",
RowBox[{"T1c", "+", "C1"}], ",", "ktl"}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"rxn", "[",
RowBox[{"T1c", ",", "null", ",", "krd"}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"rxn", "[",
RowBox[{"C1", ",", "null", ",", "kpd"}], "]"}], ",",
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ", "Titration", " ", "*)"}], "\[IndentingNewLine]",
RowBox[{"rxn", "[",
RowBox[{
RowBox[{"C1", "+", "R1"}], ",", "null", ",", "kc"}], "]"}], ",",
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"\"\<Reporter\>\"", " ", "Gene"}], " ", "*)"}],
"\[IndentingNewLine]",
RowBox[{"revrxn", "[",
RowBox[{
RowBox[{"R1", "+", "G1f"}], ",", "R1G1f", ",", "kf", ",", "kr"}],
"]"}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"conc", "[",
RowBox[{"G1", ",", "1"}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"conc", "[",
RowBox[{"G1c", ",", "1"}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"conc", "[",
RowBox[{"G1f", ",", "Gtot"}], "]"}]}], "\[IndentingNewLine]",
"}"}]}], ";", "\[IndentingNewLine]",
RowBox[{"sol", "=",
RowBox[{"SimulateRxnsys", "[",
RowBox[{"rsys", ",", "tmax"}], "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"Return", "[",
RowBox[{
RowBox[{"{",
RowBox[{"G1f", "[", "t", "]"}], "}"}], "/.", "sol"}], "]"}]}]}],
"\[IndentingNewLine]", "]"}]}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"tmax", "=", "60"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"k1ctx", "=", "5"}], ";"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"y", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"enhancedGRN3", "[",
RowBox[{
"i", ",", "k1ctx", ",", "10", ",", "1.5", ",", "0.05", ",",
"tmax"}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}], "[",
RowBox[{"[", "0", "]"}], "]"}], "[", "tmax", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"i", ",",
RowBox[{"k1ctx", "-", "5"}], ",",
RowBox[{"k1ctx", "+", "5"}], ",", "0.1"}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"inv", "=",
RowBox[{"Interpolation", "[", "y", "]"}]}], ";"}]}], "Input",
CellChangeTimes->{{3.672375233294621*^9, 3.672375308408523*^9}, {
3.672376885490402*^9, 3.672376891728345*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"inv", "[",
RowBox[{"inv", "[", "x", "]"}], "]"}], ",", "x"}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input"],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwV13c81e8XAHAie9ztXit80pCUsivPSUpZUZHUVxmVVFZKIaEyI0kkikqo
jCiysssm6147K6Frj2Tk9/n99Xm9X+eO5znPOee5V9bG6dj5dRwcHCWcHBz/
fz73tuFRtgvR3mhLbRRNaEUvLNlaJ2UuIX/+89/34e4wCnaVkbmFAuSs+y7j
dtc7JbJeJggtCnkrVuE+VAFn/myIQbWPNt3wfdmK0vxU7k5teIssDMnMhVet
qN86nTa+IQ8JPA1ZY79pRZ6ml8/93lCN3G+Ss/lSWxH/39jqK0qdaGnnDmfl
/FbkUnbnAdt1EOlwTaSlVbUipcTHTZ/SR1Goh6XdvvZW9NPYXvKHxhRipKbO
9Y21omhxf6mX52bR/Kqjh/K/VqTpmpvBVbeAKnqTOqOobaicFWvitHkJEVN0
cu7vaEPKD/5p04+sojIJV8NB/TakN6z1Y+dJDtgHAxXlV9rQr+05B+fYnJCd
YZKm8agNea4E7S704AKhYg3JyPw21OBmG+nhywWvc6n1ZgVtSGZ877xGIBco
WGpx0gvbUEXPZE72Ey4ImXCef/6lDQkVm2llfOCCvR1akh9K2tALX9n9r4a5
YEOpfMf4tzZUypNnHHiMG47+52rb3NKGeIkjl04orIfOtO7LNpNtaCHgzMH4
nevh2w75n5pTbWj433eZMbX18LJzcIY43Ya+sfNYdw7g8QnZhvKZNuRfFXLw
/Zn1oJKpE6m00IZ4fHbIrnu4Hrj954dkVnFP3mjPmF0POvLjal6CTLS+fr2e
4Bce8EFFgWoKTCR0Nc62p5wHvqUK9RltYyKK8G6fjBoe6KyZEb+gyEQbjc7l
HW/nAcWPTShGiYl06/O3xc3ygAGfoJ3Abibyq3cibFfgBcfwNn7GXibiaOjo
MI7mhaK9TcETxky03JB2JcKFD2TjPYK/ujORdJN1rO5NPnhaz+qg32IinRZq
zYI3H+waaja76sFEwazbm08/4IOhlfQOxm0movcZDWDJfBB6PGiPrx8TqU2P
n8zu5gPHc22OwaFM5ExWOtCuxw97ht03RiQyUSR1wCXYmB8uRLUJiSQx0Wex
qIS9ZvzQl21rEZLMRP8k/q0m2PDDgbshMsHvmCh0Y0Pupdv8oGHw9u3TD0z0
TtVRaTmLH1Y/VqYsFTLRz5PpDGlpATgRLX1igMlESRarZWc2CsCfdcreLu1M
ZH/K8EqsggAo8VjT13Uy0ZjlWBFdXQB8DD8kbu5hoqn/NtmRTQSgzvL6sXuD
TLRi+yKdz08AJPqFmPemmIjsHHZg9qcA2J1ebvgoyEKtzj1sZbYADGs4N7oJ
s1CUi2KU84wALLFj76uLshD9Ws3I+D8BsOKPlywjsZD0DZ6wETFByH3qpMFm
sJCCl3d7zxFB+Prm+ZknW1hof6Dj1ao0QRgz1eg7qsdC4lk/ToZ9EgSP/vE7
7kdYaK7LROdEgSD8NpsLemnAQkk7dov1VQnCRMdF9spRFhJi/Sn5MygI05d2
GjRZsBBT3peyWVwIXm8fTppxYKHL5Y8L7vsLgZL2EwmtRyykO86dZBCKW95h
JOcxvj6xG+HESCHQ21+YoRbFQt8dLM4/fykEId+X96NYFlIjSYlmFwqBsy2B
6/obFuKwTrIZmhGC8acZc275LPTkXy7/gbPCILLx6dXFYXw9m786PjkvDB05
f8+ljbLQvaNNLb8uC0Nr7+aI82wWck0Yff7gpjAIdMSW/5hmIWMd8V3MR8Kw
9StjZXmFhXj8PS0vVQjDy4jds63kdnRTWPv9w60i4LRUdFVXtx1NquoTBnaI
AC3688Ureu3ogpX5dRU1EZBZEHN8qt+OTmQ4og4dEXj6daxwxaQdKZvGt8id
EQG7a0ylP/+1o7FIjpXsMBEo3ltGyr7Zjk5Llht2z4rABNuT43UmHr86PZO9
JAL7h4auvs/Gv794Q8xDTlF4xhs4kJfXjqJsvH7qiIpCq48debS0HTWnqHq/
VRCFplP0+UfN7UhfNSXjhrUoBNgSNEnz7UjLOJREbBSFZhczbRPUgarjC3LH
2kQhzV5si4puB7KYHrWq6BaFqi47DpkjHeh65KH37mOi4Kg9WiZ6HI+Pr8lO
riPAlfcx5iYXO1Dk7rx8M2kCqKps/mzzqAMJlWxjy5kRIFoVU/Fnd6CBGNOq
OxYE+CrSPucy04E+X3NP7D5NAD9t0+WLix3IZnP5mSgbAkxkx2le4+5En8Ms
6/mdCcB76z8jbqlOZPNfUPpUMAH+Rb7vVzfpRBrqGcFGYQSQEIoLajbvRMLE
tgvvHhHgxEyg8q3/OlFuhcwGu6cEsPM3WBlzwOOKuQ9Zbwgwvk911NYfjy8N
OxeVEGDb+U8OlcWdKKxVyEiiggABsbdElCs7kW36rq03KwlwzPZ3UUpDJxKx
8e5XbiDA3BPLn6U9eLyaeuxNFwFairkOxq3g8ae6ux8sEED3+x3fnfu60HnV
V/OnFIlwH/PRFK7tQsFhVNHbO4iwv9WqaqilC6X/CtySsIsIe4envOq7u9BC
jNPpYQ0i+FIzDzZOdKHAf3tLXQ8S4c6U3ddkcjd6V8l6EGJFhNoDIXmd57pR
g4xBUro1EXqDpJQ6HLrRzK2i4iY7IvAReGd+u3WjPYpvZsQuE+FrTdiRo0Hd
qC7c1SLRnQhXluj+5I/daOKU8MYv4UTYqPmn7JtADyJ99NnX95gIyT2K+fK0
HqQmNGfOFU2ECsvU1jjZHnSnqDPoyHMiEBN/3W7W6EEELGWy7S0RPmiUp9nb
96BdbJ2CiTIiaN2y0g+r60Hu3jePycwTIWC9PuJ+34u2sL2EAhaJwBadIB8s
6EXtp3y/jS8TYafa9eb02l6koRqsVbCOBA1qUvFr7F60+DtWzpxAgoOZe24n
Kf9AHqeKZ0K2kWCBstYbXv4DKVSWp84okaCbWvk7hfkDdapUXTi1iwQFqH50
dvQH2kNo6tykSQInftXqCL4+tPJtoKz0EAmqKA4EHuU+5K3C8/iPNQnsp+bK
Dwf0IaVXAkZW50kw5R+/FhPRh3pFRXm/2pNgv+3z40Iv+hD6LeYZ4USC7LAd
H45n9yGOV1ttt98mwVda7qfrP/uQn6jRbtunJEB2xQwvw36067bpeHUsCZh6
vn/4LfvRwJhZ8s54Evg5R/wovtiPDnyzkvj3hgReNtJByXf7EfdtZ66YjyQI
7oXqm1/60f2xxy0NDSSQNVAPLdUcQPdYP2uWm0jw+vWWjdQjuCvUy7a0kSDo
1pRWlMUA8nvR9cGviwSmE5Q32M0B5H0MC1MbIcHYf4Y2t/MG0I38rMMvOMlw
2TDNqP/gILqezA213GQIOcG/44LFIHKLNFdf5CWDD9naU/7yIHJ1XJI/JkIG
51vvDp98NIic5HS4eCTIwNN65VBi3yCyD276clWFDG3xG0RYIUPoojuW/Uyd
DBVyzKYHr4bQBbvrqZVaZAiey5d6mDeE7LQZsbL7yXAnJlfRe2QIWc+cu9lm
RIb9W2vX1PV/IkvLqV37LpIhNudN1jXpYXRKT0fBwYEMlZEyiplaw8hCJVI2
+ioZbroxEsxPDiNzEQ3C9DUykOczKnoeDaPjZXfGE33IcMHgjOxWoV/IUEE0
RegZGdQMTA7+ERtBp6qcUrY+J8O6rfI6u/aMoAsXvqccSiDD26Mdh1esRpDP
q0dvfZLIcOa4/C5IGUGfxCnv57LIwPlxz26qzigqzXV7T8whw7F+z/OKDqOo
wbztvVIenq+SnczZiFE0EhGVal9Mhi6BJfHw4VEkKchI764lA01xF2U+agxt
fXsr/W8Dvl+O4cNyX8eQml5nOq2ZDOJWprRdc2PI5G5shkk7GfIlPccGTvxG
95alMiuGyCAVvyjuLcdGj2K8M/t/kQGzd+nJtGCjF+o/Mv+NkWFwt/rA2kM2
yr2WkKUxTQbjBq7Iw+vGEfu33KfUVTIw3Tb3HF4cR3+D7n6q5qDA3hxNUonm
BOLZMvRpmIsCJY6vnDq9JpCM3ZtsGQEKaLVr3xvhm0Tb1/Hk7BOmQG/zenvx
Y5NIK+FCjiWBAn6diVKPn0+iE92bP0fSKDAvNHSbJTWFrD0CP2cyKHDbo09s
g94UcqSPfm6QpECdruBelssUCjzxLpcPo8CiR3IDR90UKqxTzPfaQYFXPB25
b59Mo2qH0PyYXRS4kdUQLlE/jZh8E/k5qhRQ0fuSNcszg6Z0Mwqm9lCAY+02
ydNvBq0OiBYKIwoEE8933K6YQQK+zoUKOhSgZly/eIJ/Fm38ovzF7jAF+lPS
0ivjZpHy6YgvvgYUuB94g4v9exZp/5358sKYAqI+z6f/aM8hC9VPRe0nKCBZ
PdX4bnoOnW+hFM+fpEDt8QG/j6bzyNXlejHpNAXiyk/qhOfMo9A0tRJDawr0
1OuSyh8uoE3ntlin2VHgoDXLolLkDyoiia8TscfXa3tIryzyD5pyXz3Q6EgB
9+yw5kefF1GQwuTQDlcKfDS5v+/Rib9Irqfvfvh1CmyMET7x/O9fdEKnotLU
iwLS0aanp88so/G5bPusOxSQt9xvdF9yBfknJ/OT71Lg7Emldt2fKyhXKMSg
NYgC+lm+1Ycj/iFJlmmjeTQFCvzzGfU78P8pQQecPz+jgFnjUcsX2ZxgvFeV
SH9BgdRbTekbYB34vKQf70ikgNJi7ndZWy4YuvyDeTqLAp9uGNLW9a2H29JN
7oXZFDjeqaDwJogHaE1ldKk8ClRa24qaqPPCYbUky95iCsRk5HyZeM4HqRxX
e8/VU8B/YOlsQIQgHPxodaf0OwWq3h0aWjAXgt7zJjJyrRQodHi1kyUlDITa
3TaDnRRICTDQpmaJgNuTpZ/nRygQqij8ROcPAfYoBI47cFFhi0oGf+kBCrR2
3wqr5aFCOvlsTEEqBa48vLxDUYAKFbr7rupQqfBizthlnEAFwkL7aMQQFdYV
U+edpKkQaHlC6twtMag5/nrFTZMK2xMOxvpcEoes+wOdsXupIF/lqTuZLw7P
PsvmlSEq/HpFSxoTkAAHiYTrhENUUHzrp+yQJAH8g3ET749RIauJNOlXIwlT
lO66ZjMqyFS9H/QVlYL2QxLv/1pQYfSp8OXhY1KQ8i7mot5ZKliujz1a1yoF
h12j+gYuUwFWO7bLfZWGnYltRfxOVCBGFRCNV6WBzqQ83+lKhfFXERqDuzfA
L83Hp7xvUqEsVaDJP24D+HOGNzPuU+EL+6SDrpIMOO5u/ACBVLh3NZryQFcG
zM+LPLwYQoXc6rN5ipYysKn6gUH2Iyr8i94tEnxXBr6GB1WYvKBCdkJ6685G
GUgtq3rl/pIKOU7XVPL7ZCByjtf3RSIVGu+K5BdNy4Cdhf8+9jsqXIxKVDYm
yQK3zN2cgM9UEB/pzf1pJAts07LI9HwqcNVnznw5LQutdzmvtX2hgr7rm0c7
L8nC6193dmAVVBDaVBE27ScLOhleKUXfqZBM5VvRzZIFhf4C/58tVHCSv2pn
+EUWSORlOyEWFUZkJQN5qmRh4MYtWcseKuRpRQvGd8uCr/aNZ/OjVOBzL45/
u04O7J2zb0qOU+Hx8XvmDwXlwOTVnPmBKSp0SUZJ7KXIgQzPNfKjBfz8UkKT
JjfKQUm90wNFLhrEbrEpHjsgByoUEIzmocF1n4iaegM5SLEkBHMK0GCbDSCv
43Lw8NeHACaBBvYv7X10bOTAinPGz0eaBoezh/je3paDZr0yzt+yNMhclfwr
dk8ODoVF+JjJ00CGt3bOKlgOtkvs9lZQpIG167Mcryg5WFFxu9WqSYPzWT3c
omly4Oypu6i9jwZMT/Jemyw5GCqluL8FGrgfag+N+iwHtcbZbt56NFA/JrEl
qVQOntkvOG0xo0ExfzKvV6scaMbdvODlTIOiHStf3szLQerA4Z/D12hg4jp0
5fJffP9bGXam7jSw0Bdek1qVA76cPOtN3jRwvYGJG3Bj0N64dOZ7CA244o8b
txAxMKTVdmk9pAESjzMVomJQcibW8k0EDSSl9ZNV6Rgkj+6x8IihAd+9LT8s
pTG4wXX7+MZkGpxtTeRY3orB2BGj5rB3NFCwizAqVcTAKlzK9G8aDQrknEo9
dmBwUKrIuOETDe7FlVRUqWBAUV87crOMBjMLp06xtDHIcvCFuh4a/HH4juZN
MFCxOVe1qZ8GZvcke7mOY5BzCpn4DtFA8MhwH78ZBnmHV8+q/aYBf86OmhUL
fL2bbt1JWKTBZmq8/t1zGOhIW/AuL9Og1Ktm0tQGg3Kq+kOzNRpEpiYcYthh
8I17/oUAjxjUT6m/jriIQf2Ac5EbWQz2hu+TVnHEwLjz6KFGmhiEss9p1Tlh
8L1JqWGruBi07sogW7lg0FrC7umVEYM1rc9hTm4YdL6wXz2sJAZeHH+tDD0w
GLE8t1fqiBj4JfCHr97DwOEYqnA3FIMF7ILKPn8M2EekDZuPisGxF29UbgZg
MKnRfTrAXAxi7uSF9gVhsECz8Jy2FQPeM3eivcIw4Go5mv/VWwxOntHkmInC
4F6Nko6MnxhwKZglTUZjwFMmXONxXww40zfnjz7FQCCztmPHAzFYzPb/r+UZ
BoSHen9jYsRAilo7ePsFBtIGSMPxkxhAvmDW7jcYTJReXg37LAYpLupFk7iL
NZ6WZeSLgfmve/+9TcLg3KZpw+kSMZBX1/WgpmDwivO1tVu9GKRmsLY0v8Ng
cy5PiMewGPyl3JobzMBgUWm3SeyoGFySLuS//QGDqjdnqYVsMbCQblCkZOL5
eJwbvzqD5/dSU/beLAxSHR0++ayJwf1NTnfcP2GwU76hx59OhzpNpmZkLgYc
cUuvkiXoEMhYcybkYdBE2mxfJU0H31o3eghuVw6fGX55OngFGDV45mOQ3aXM
G6pMh1XrPVcMCjHQiniy87E+HQq4L7UmF+P54S+b/2hEh03CnjeESzDoujOR
32pCh+hf3kwX3F5X9Q7STtIBLoj0q5ViUHT476kYWzr05os8ySrD4MDambvx
XnSgByjOunzFICFYfJTLhw4cNjb8dbhXqO3G9nfp8C6MOLnxG16/isfFlYPp
8PgpdU8L7i2WRzLLoumwwS/tuFwVBkLZqj9+ZtEhk1W8NawGA3uY1dXPocO2
UrY6C/fX2g/v0vPo8O/qkPmGWgy8B7bdcC/BP186oi0V95SonDB/Ax36NY32
fanD69NBZI/iKB3WUltnchrwfC7UJoSz6cB+cvDDDO5Q3yCe+Uk6WNn3ZW5v
xODQU+7mLwt08EBTD17izv26ZH+UmwHW7apTPt8xiJP5FeW6gQF/nm0pkWnG
z/d94gpTjgGFhXnrj+E2U7ex2bOJAetSruf54RYx7tnOvZ0Bz4RX3AZw+3i2
VDzRYsDvs2//xLZgYMcsnsk1Y0C1S/u3P614ffbXPBm0YICH+dWL0m0YFPxu
0xA5w4B5Q/tEXdwkTra3rQ0D2kTU/z7EXbyNLijixIDPtgqqckwMxH2dMdtA
Bkgr6mxSY+H9HeL5LTSEAatVOconcbtE+V/KDWNA0KflCXfcVe/jMoSfMKCd
uno3F/cNZtWe3JcMGI2//FWtHa+vbbInhAsY8ONk0/CmDrwe1BT/qBcxoFnF
vOIA7i371Z/ZlOLrfwy253B7mxv1fa5kwKkDb0ee4lb0vXXFppUB2i/3bOXt
xCCQ2XTv8zgDkk6sanTg1vb1y7aWEYcfZ3nCLbsx+LM3ztoLE4cM+94mZ9wf
FrOFozeJg30Lx7g/bsx59Hydojh8kV+XmYWb76wJTV1THO+HYS++Hgxa9kq7
Cx0TB5e11aA03PaLeRqf74qDnfu7q/29GMh+ahlq8heHTl6l6lncnU7j4ewg
cZAs9xTg+YGB0S+ZUdlwccjufIAUcO9iBsQ8iBOHj410Txfcqx/NlqyzxUGl
8fm1ZdwRTtMFQr/E4azNk5y1PgxYKI7v8pg4zMrEphH6MZAk6JlVj4uDvnVE
mCzu5A9xE/fnxMEnTEH0AO7CaT3ZNU4J2KBfS7iPe/jaC/9pSQmQKL53YP0A
3q83DUyZxySg1KKcsYh7wOfNcHyRBBRuXuTMGMLP6/tz54pSCSBdp6zk4xaQ
iVoaqZCAI7Oiv7/h3lXsL7KrVgKsiOzkXtx3Vy+qVbAkYFppW7zwTww2eij4
j0xJQOOhXY8v4b5wLUNeGZOEEw9F5cWHMfh9Ps+uLEASzrmeiT73C+/PGp2H
CiGSsK2olXIZt6JSXV5EmCQcV9cKuo77ykKviO0TSQjMXjUPxs32587jei0J
3VaFAR//7+SjwgeLJKHrUeph7hF83o7+zK6cw9/fFJocj3vqKom33loKEp1m
+opHMThrOuq4bCcF7347/qjE3aBSwtxqLwW1uVvbG3GnLl9N8neUAu3r13J/
4LYPqj4InlKgT+dVXcPdl+hz72OkFBx1f4XtG8OgsWuC81mlFFR3hPJm404/
UrtyYbs0yP7+tvzkN55/+51qXPPSsD9Bz1xqHO+n952PA+o3QKPozqzACTx/
51xf1RvIwJHM3L60SbxeVxihBnkyECE0tal8Cu+HguiYmo2yYDZ3pDlzGgNV
269HiUGyEKheFu0+g9/PcVR63bwsTNlv01WfxV9fQg02Pi0HdwzL+NtxG61n
SzUXyYH2oSX+i3N4PrqGyqsVMNCs0hecw+0UF0oOeojBkXXnCVfmMajj3Dip
/wiD2Ru7iY64FS7m1wg9xoA5hIjOuIeUf/mG4/fksCNF1A23RSVMRT/HwIa/
jNMLt87MbF3Se3yuTruVh+CmHbb0r6jE50ZBR/473NfSpqz9q/F7lqiVmIr7
Oylg32F8zpoE/3yQjjuk5+NcLT5HVf02nMnCzXFN2LYFn0tirQozebjHnpeg
gUEM8iX+rlTh1uM6KZGI19nZqT1dNbgT7ccXzuN14W/+PbcO99nd4umj+Lko
uEy6fMfdWnVNchrP4wciqZuFW1lJYDELz9PLRPanDtxhjxNa/r8v+2WJ0C78
ecSqPnhxEYOUBx57fuBOKre9kL+E3/OP3xH7cXNvXdrvtYLf4/M7fw3gtg4L
l9L+h4EBQ6RwCHfR7Ka/a2v47zA7nfBh3P8D0t2sUg==
"]]},
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJxFxW0w03EcAPBpjTAVImYPf3KlhbMTh7tmcjXyUCm3PFwME4WdcafiFC6a
p2RXTkhJrs5t3Umdh9LOdIxtV+nhUs7laWGuMfPUonrh+3vxuY9jAj+Ctw2H
w4X98/+G/ARjRlIZc+v70Ro/Dpbqv/XXsFIBhl2Bc9hROwmYED7ex4pdodXC
4sLDRVraU/gHV2I7T+uEc09fip+jyWHTtTp5mvsInNl7rVwjmIDdm0Xv2yUz
8FR4CnnMRwvXkIopD+N1sK+g4xlesQzLvtSd4h9YhxnlG0y74D8we9pvzIOD
Y22tdnt5bEljBOcahJ6vruJhE8ufqWfpBJigJLDNXxvDv1XitOrMHfAUR2JP
pZrBATcz0gfE5vCdjQ7TwDgLOIYsC/2u2wkTpYc0TpG7YZ5Xkz7K1RLOyb8c
genRN2ZFwyqVFRxK3/WEeM8arhB7S0O5e+DBM48M2b42sFTJL3fF28JtFwtY
ilE0NcTfJ6N9Lxy4GVvUmGcHJ31+s9gRaQ8zCwpfcDESXM1f6Caq0ePXH083
9jjAc7zOpN4SMqxNtzJRcimwJHjIkOxGhadTPLzxejSpdURUoqTBRfGCJmUI
Bq8Y7CtCOtEu3TW1g86OsFfi25OWQrS03sZOoUe7SG1Kw2Oc4DCChvKhB639
NimT0/fB/PoKa+EttMLI+deJ22j6ha5Bogg9yVAXVN1Fn+tnaWsa0EcXdYqW
VrRtUHRxXz86S6zlFsvR76xKjgQNoctGny8NqdC4LIvE4U/o2Qap//gEmo3n
ODRPoZtT5pd5anScJ0kyM4v+OJBFXlhAM9zNVtt06ErRg+FsPTr4vLJ0dRXd
IktM7lpHbz+4HpBnQHMrqyjMDXSPbv/a5ib6L5eKK9c=
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{0, 10}, {0., 9.999999795918367}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.672374693369535*^9, {3.6723752795001574`*^9, 3.672375312099003*^9},
3.6723768640910397`*^9, 3.6723804734778357`*^9}]
}, Open ]],
Cell["\<\
Note that this gets more and more crisp with a longer sequence (just as in \
the dimerizing example).
\
\>", "Text",
CellChangeTimes->{{3.6723804778370647`*^9, 3.672380498419897*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"inv", "[",
RowBox[{"inv", "[",
RowBox[{"inv", "[",
RowBox[{"inv", "[", "x", "]"}], "]"}], "]"}], "]"}], ",", "x"}],
"}"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "10"}], "}"}]}], "]"}],
"\[IndentingNewLine]"}]], "Input",
CellChangeTimes->{{3.672380505348239*^9, 3.672380511340527*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwd13k8lU8XAHCyZHfd3Rpuq6QsoajnpEVliYpKpWwlFaKiQtQvZUmUFmsq
S6UoWVPIErIk7kVSJHv2kJDe87w+/vl+5mFmzpyZM6Ni77bTaR4f/sz7/y9f
nJ+9sKZjyPrny55IGmVyiXibgbV7lI8RdnFt60h/Ngv2UFY+R4z6L3Il7WW8
T0pIOYh4ndtWS3pLKRz4vSCKGK6XitiIfn5J5/LIgieEzbgtezP6u10ac3BB
HpGhzq+9FX3B8vjhnwsqiYuuqtHmaNE/MZUnNFqISNlcj4PoU8UXQwc8fhAm
nvsST6A1Em99ykzrI4Yso6Z80F3mzgpt+iPEr5rPQeHou3KBig8O/yJSys0a
EtFrPHLTBaonieKhqmNv0SVNMRZuS6aJFRqe6c1ozdC59extfwlDk3k+E2jj
7rVtq/bwgbepgZpsFpfoWZG9eXyAH1patkcR6AuzQdpvzguAWEDg+uPo2tMO
kecDBKB7j4T4CbTyoOGE/jUBYH5TbCZd+nU4O+u2AHis7vZ0RUsUWq1NfyEA
28vlM06h4wNUNjzsFgDDsXvbvNHvhPPMr+0UBK9x194r6Pkyvcd2qwlBu1uZ
2CP05NUDm++vEoKPw3FDpLvn6pT7dYWg8C29IRH9fiCv6eJGIXjxsS0uGR1Y
EbI59YAQqLz4u/YpWth/pcq8G0Jw+mzvrZekh882p/8SAupBh9IitFCNkLH4
W2E4Fjhh8p0c78lYh68lwsA2rPXsQNMltf3TPwiDxero2B/ohWaH83Y1C0Nr
JGW0C72p5vXy2F/C4Bp/N6kffanGjbJCbT7E5DLWj6P5aj9/Nr87H746cXRE
srnETO3zEzdPiYCL8csr2milT3Yxm7xFoPND9aAO2qiB8WHSTwTYiWp7dNHB
Tb5L9oeKwILuVyvWoNntZh2cFBEwqlLrX4/WHR3ck9UqAnOulQ+2o91pGhub
jUWh4JM12wEdyeg4FWwuCn4PBJ85onNYdxIMrURh+O/KDUfQc/JzfxPsRYHn
O9/9GPr6wtrcY76i8LthrM0N/XS1q8ZMhig0DLeJ+qK79qTJKimJgVjj8bv3
0Ml7/xYfWCgG1bdVIRrtvM/0RIyaGCy649Qfg+636S9g64lBTPy9jffRIwcX
O9IsxGChzKBIMnrWIT5N5JIYFOoYtr9C09zDNv7qEgOnImNuHZrr/nVAc0AM
su1fZdSj75xSv+M+JgZ0vd83uWQ8PD/0Ds6JwdPvMvuayXieFQ7rZYlD2dPW
mTa0mo9f89dt4hB5VSVuGL3hmuvJiufiQGnjOlJyuIRcRtuesExxWCYa8pKK
Hv9iYbQ7XxzetH3lY6CTV2qz2ivEofOqS4osWqLpd9HvH+IQ8C2IzkE3Lgqg
L5GTgEq1fad00cdLbuVfCZQAVnGpzSH0pkHBZJPrEqAz762APVqJdTZcJlIC
3OxH0h3RdS57neIeSEBWjhLVBa1LVZTOeiMBEdd0506j+eyS7TvHJECxP9or
BH17Lld04yFJKHH9uSifHM+SMtfbTpJwSj1ZogD9345PDT3HJcFma+9kEdoj
oS8u1FsS1qfINb5HmxvJaTVGSILx6PfCerRw4AWbY6WS8EDbzegn2ltyfeqN
ZVIwG9e/aUEulxhevZ3SsVIKQnKUnqiij9han9HRlYKZa4Uyi9G7012Jz0ZS
UOd3dEQdrWl5v0H1gBR4bdfpXIvuj+SbzQqTgmduvJQ96P0KJaatv6SgYuLJ
RCTZfnJ0LGtaCg5v22MehfYuXBB1g18adJmPnseh79j7dBlJS4PJAnP/ZHT9
49V+T9SkoVfrolcuevvqx+ln7aQhoOJ5xlf0WvPrVJmP0mC7smVoRR6XqLyf
n9vPk4aF+zet0UbvHe2zLW2VBu0Hp0L10Wcit6R69ePfyzmZbSTbB/+pDM+j
wLzihLX70JHaea+tlChgpLX7UyBaomj5gKoVBRg9fwr70B1RlhUX91Lgy7WA
lSPoHE+vxNb9FEj47fV0Em2/pOTAHXsKvLdYUCLwGtvDbGpE3Snw8rOyrxLa
/mBQ2kgwBRZ7lRPWaH299GCzMArIJh7zOIiWlOEdeRpBAZ/TZzIc0bmlygsc
71HA/PSe/Z5ku3rujaYkCqytWL07gmyf7nYvKKJAU4uwQB06jCthJl9KgZTA
64rNaIc0rWXe5RQIdm41bkdL2ft916ylwCU+z6oRsr2SsTPpCwWi8lpvUPOx
/d4m7dBJCrwyXW61D+20+uHEPnUZKDH9azCBDg5jSPuulIG3P59PzaHTeq4t
TdCSAd6J1gqRN3h+R7nt79aXgY3ZhxIU0NfmDN95bJaBWZ1PGzajn5Y3hYbY
ykBRcdd/0ehaZZPkNDsZMDk7EpGEHjtXUPjJUQbe1Otnv0AbqCeNsY7LgEjO
jc3l6Opwj72JXjKger4tcAI9tE9y4dtwGTj3Q7TB+i2XoL7yX9d+Sway1v46
7YDWlRi3FrgrA9kNGVru6IsFLUHb4mSAQyvgC0ZTOI+HeU9kYHP7lskCtNaA
Uf5QsQycSd2cqFGA9d/Pe6fyhAzcV52qX1LIJZYO+EhcnZIBLcYwcy26eV/A
+8EZGXAz5A8xReuvDl6bP48K6bvjhD3QUz9jVK0pVJAUTT5UiD6/r3AsZDkV
iNMRRo5FeF6Vlzwb06DCPa23HefQLToVR/ZpUUHHILLwBtqA8qll8Roq7DBP
13qDnn3fUfxuCxWMw2fZ7Hdcwk9H+NZvOyoomGSVtKI1HoqZ2TpR4eh/jEeT
6G/S0vPLnKmwLuBAPaWYSxA/WRduulFBM/nHgi1ovofLHFb4UuGtakRYJvqS
tJm2wz0qBG5KH3xQgvHwtRysjKHCK3Mno3fojn6rlFX3qTAn3vKnHb3xva38
XBIVivcHRquUcglBX3eBqFfYf+p1bgr6Sv+thtpaKuz+U9NUWYbnVVPXh5lP
VLARtCkcJF2qV7yURwW2XLgs9T32H//lxaUvVDj55taKA2i/nZww3V4qhN1v
E55En32dsTWenwZ1KcJnjSpwP6cIQpUgDdp2bLvkij4daa03NZ8GWssjFsWg
PVynF+2UooFxvI/hJNpN1UhAWJ4GPSvn/r6qxPoV/OntSR0abFzrcduiiksc
9eJkRevRICc9PP4q+ojjmWfla2kwK9TqWYh2XC8bo7KBBncthiI0q7mE3dhh
b54ZDTwNB9SVa7jE4bYMt3mWNCj8XceyJV0teHTlbhoIeJwcj0XbJj+2CrKh
wUvvu2GKtVzCxmZEa91RGpTFPZ23/COX2GdspObigvNhXaacQu/ViVS5e5IG
SftN1ueiraX0KaOeNNidkCKyvY5L7Cq+OJjoTwOvCulNPp+4hKma9GOJaBps
nT10XZWL/6/C7fGyOBrcnhy95YM+cqTu8ZYEHI/MnH4z2v9hxBP/ZBo03rnk
FsnjEply9NTxDBrM6FsbqzbhfS33dKpMNg12KfSHBaNrrXmpGnk4no+cjnF0
7807z5wLaXBKNzftYzOXUBCXTWutogFR0Nye0MIllj05l/anlgbtAjbe8l9w
Pxq3pDHraTBiMVd8D21xOSbdopkG64R3mMS0Yj7MKL4s7aTBvOUz9PffuERE
lN/L7z00MH2v7buvDe+Tem0v5/ppECqm7TSCzvVMyNAfpcE0lde47DuXGPip
mvnsLw2k9Qb/NvzgEn+CLmdW8tEha6H7ppBOrH9LOzO7BegQvVqzy7gL77OO
SVnKYnSYt+ifErebS6yYJ5y9TpIOrAaRiMQerC8JR7JtKHT4ZnnR16cX61/r
kpxIJh2+d3ioburH9T9/LeelLB0q6bubtX9yCVd2X06tAh0e3m1as2IAz7/d
T3NFOHRQ41/wlxjCej4mlrdoMR0iuAKjNsNc4mH48TyjZXSwkGnJujTCJd5U
q7/2WUkHpSUj5n/GsJ65XH8dpUWHq5HKxibjeP8QGXqdvZoOGkJrPdMm8H61
KT1/xIAOKSWPO55PcYm/HdJvJAk67KBaUsymuYRYgPsbNSM6ROpQvvDP4n32
reZbx610KEgVrM/+h/V7/823ASZ0cIwJbcrn5xHr/4y9jTenQ2um5aZ2AR5h
cndXQb4lHTqfhoQtFuYRe1dnFjTvpkPth3bjCBEe4dRAL5zYQweHxpkyVXEe
4XHqTCF1Px02BzQ8+SbJI64/1y0ytaND+4pN+j9oPGLx4aV2zx3p0Ht2focv
i0cUUOXmSTnTYdrms9pBeR6xp0z8ketxOhB7P3gFLeARI15/N350pcOacwpD
wgt5RJDacOdKDzq4Gkb7fFnKI1S/tl8JP0OHrd77XaU0eMRuo9JySx86WK6y
2PhyDY8YHM9yzrhIhz/rjKgGwCMCU1JEaZfp8Cteam67MY9YYBP11DMQ432+
rrffnEfkSoSYcIPoYEpzq12yh0dYFvoM6Fyng7rhNRnKYR7Rf8r1+u1wOugm
X9yReYxHKDRZfrS+S4f7r/3/i7zII7KCNrrnROP8b30uHQ7hEeaGq2XY8bg+
nSPKtlE8omdocYb3Azp4eGxc8TeFR/g/YO/6nEiHcxPvNMdyeITsbrHxNY/p
IDVrGXq8kkdkCM9GRqdivJYLfAltxfXIG1w9k0aHxaJDBsGjPKLzeFvj/gw6
HNcpnEgQaSR8lT55vcmig8HZX89lVRsJ5qditmIeHVJzf+lbrG8k0i9n5vm+
oYNAV83N1IONxFbdZJtvhXSYu1To+8i/kfjee3dmfQkdGr+v1PqY0kicjwmK
vf+eDmLX6Ot6GxoJmvmFdXwfcP5Jny9yhZqIZ3wnvx2uwe87ju18s76J2PzK
9uK7OjrclDKfo/s3Ed+cLJRVuXT4EWYcm1bVRHixjd5dasL9+MCVMcZpJihV
2vY/WuhQs3+oghraTDzxXSSw6RsdBrzPLD8s8pkwWsVKTPxOh1NfRxrK4z8T
XzpENgt10WFV19HQxD0txOnb011OvXRYGPZu3fj6L4Tk1oHA9z/p8GTU1tPu
SCuRPP11yZJh3J/NaompvV8J4vnHiqtjdLh3uPqf23Ab0Xzo3bHeCTosSr5a
bnzoO3GK+kps2x86DH3r7Rd0+kGIlSWmPpmlw+TAuBrrdDfx0OuOqRgfA2qp
09q1Z34SBmrXBl0EGNBe5nYodsUvgtt6LqxKmAElUtZm3rWCcOLG8ZXqYgyw
D2xQ5HdmgpDRwbpQSQYc/9se4t6zAOLHzU8NUhigO5Zu0TumAnopQDWnM2DH
w/dX2t+rQt0+rVdpLAaU3V9+sECTA8ckFu6WlmfATsYRiqEbB+YVMibclBjw
60CUys7bHIg5Nf9OnQoD9nW6Szc954DOwj+6mosYsDboXcnYWw7UNPY3RSxl
QKCew+CLCg4cCWr1HlvOAD1xrpRAHQf+GdTK7lrJgF0Tnxap8zhwb6jw9Sst
BnDWwMWpZg5oPni5n67LAO6S3rvdXzjwYdej2dNrGJB0QnaF0TcOZFzpaIkx
ZMDnU0uuyLZzIDpHJa+YwPkY+Eq++M6BS32H7/YZMeDLvjdx9B8ccJFPOEPZ
wgA16bwNlp0c2GnWtktvGwP+dC6XOtnFgbUXlbRsTRnQvVJ87EQ3B1RfHqRc
2cGA04rbc3f3cED0R+xQ6k4G+CZv+baklwMj9NbqeisGWBIKs73o5i3yqX/2
MqD/5zzV6D4OFHnbBCkfYABRriG7rp8Dj59GHTU+xICJx1u2NKDDW5s3u9oz
YLB6Zu7gTw54S7EX3nZiQDb/9mvf0Fs97rR3HGfAqinLH6UDHFiVyCsQdWPA
Hc0XVuqDHGA30uNWeTDgzT7L8lA0n8juC3vOMMApteRnN7pnza19ft4MuP1k
ytxgiAO1x+v1ki5gfiyfdg1GZ8fJMKv9GMCDJ9lcdCB/eL3sFRzv+0i9A8Mc
cNX++AKu4XhCPeWj0dZOUjeOhuB8P8/4ctGLK0NNsiIYwNLuLiFGOCA1U7Ws
NZIBAYtF5E6hJ9XFRQTuMcDhxnjTfXRZeFCpRTwDFvJ+E5PoZ8UVD70eYPwt
tNcojXIgcnx+QHwiA9xXXVu7Ce24N3DdwFPMR4El7cFo0+AyeVoaA86ZybxO
Reu8EZxe85IB1Ud+S1ehBZUvZ1/NYcCFqowwoTEODFgWR6a9xnisbOhRRnMv
83vy3jKg6F8a1QD9qOfiSk4pAxxf1iqfQBul+zwuqGNAV5lVbTFa7Xt+YFcD
Aw7G3XBoRFNpM44STQwwMLPW70N3nD2nYvOVAWdOLquS+IX5+Tj3n387A7wf
68YrojNafn9N+cGAoQQz3gp0wPqz0RN9mM+syuumaGf3LG+FQQZIDkQo7kdb
PBy33jjCgGPjy1YdQysLe9IiJhlw4GHMyGV0UY1bqLoAEwzjDzlnonXoIH5X
mAlKydsvF6Ef21CC+cWYMN2RqluNvtHz4mojhQnP/1w/14GepxEgvIHOBGvD
Fuog+uxpyyupLCbYGI3t+Y225R+75K/EhOSIySGxcQ7UGxfz/1RhAp9CkTEd
vSXspr/VIiZEGnnsVUSvkNf2U1Nngrmu6EsN9KzO6XPcNUyYSiB8zNHuFzZN
rV/HhMzkOz+s0J3v6F5PgAl1YcPMg+gq86zTfsbYP3d/nws62nnSbakVExym
7Dz+Q0ulvx+6uZcJZRt1TgajL03cOfl3PxOW7DqxIRztcknveL09EzSsz/jE
oNfEeh/xcWfCNbUcmxfoZx1bu7o9meC3S3xTFlp5mayjpRcTaCH7Ka/RItl5
dov9mHDIJH93Cbr54/SBuhAcf7xaEhdtyqz6svYGE7ob+940o4sOxNgk3WTC
ts7Gt63olD6Dveej8PvbQ76d6LMCvrsWpuB8382I/kL3bzOrD3vKBKmny3wn
0bbhipZ/nuP6wZZvf9CbFQvMazOZsDSHd4JvggN0vX/bvIuZcHWsq0wCneES
ANVfmTBs31OgitaxP1yx+DsTLMRF9Rehs/cRFgGdTEi4npu0BJ239e8h3Z9M
qJ3PO6SOLlp87mLCFBNisyOtV6ONlPbOn5lhAjXD84IeuoShd8PqHxPkpBvu
rEG/F5yIFxNmgZPY5Mt16JoO94LTNBacF4u+uBlt3rJjy0cmC8zfrbI1Rtd9
0qhdJseC7UI1OtvQ3KKBr9+UWaD35NsHU3RLvPPfrRos4DkfiN+F7rU5bKi4
jQVnWpVmDqFddhKlXqYskIxucLFDD2xTMq3fwQJ/2zquPXpYv3X/VWsW8IXP
u+eEnmTuvTDqwIL4+9NfXSbI81JPwPQoCzK776ueQP8RYoYku7Cg/L2N/Un0
7HhD9P5TLIgWsm5wQws07Hhd5seC+533fU+j//ugYaR8iQXrtlDizqCFiyU/
nL/CAo9X+rln0WIvqz6vDGVBo/7Ud2805Ybxn6goFkhl9wn6opVMCH3XTBa0
m+eH/Yceenf8b1gOCy7N7ba7gi7Uv1ec/poFt8aYmoHow4tHTUeLWOD8dUPF
VfRD/kd2p2tYYHjPrTEYvSRXOOR8NwtCLp8/H46e0tC2iOljwc3txxZGoCuS
DjHeDLCA2iRbTdrlVu79v2MsOPqujX4L/czVJdP/Hws0rRtCb6NXLar9Gshm
Q8YHU1Y0mi92+mGKPBv0l+okkP5EXeJcocQGaQ2rJTFoDz7/MdFFbFgTbrsq
Fp31RXP+dU02/DM10ohHr715e9Wt7WywtLzy7QEZH9HiiVdmbNCs6TB7iP5y
ceg114INd/Qb80n7nDTezNzDhkuBN289Qhds/bMvyoENBT19Wknojf8OXL7v
w4ZTihNaj9EJwXJ9Av5sUK3Vvk16ltFs7nyZDdeIBZOks9V3yWkG4/dOMplP
0Etttr0svsuGTr9fyqloiazVbV0ZbJDjfS5+jnaGX5u2Z7OhOXEVNQ1dVvXi
aVoeG+z4Lh4m7dex/KxXERsqU6nTpEekVSVFa9kQWx6s8oLMZxcpA/U+NpT6
2m/OIOM5WZUQPsAGDQXxQNLXA4KEJ4bZsNuyq4z0lnuC9W8n2bAdDDa+QueW
TTvvEJSFth2lOpnoWOWeOx4LZMFWr3sii1zf1MTZRlVZ2ORMX56NttKztzdY
LAt3mI8OkZYy/7pCcIUs9F0ZeE/a/0JD6e21srAxYyYsB+3YWDiWayULOeJF
Qnlkfn7/cPvHXmz32buSdP5Pnr7UAVnYevi/vaSp/AN+DvaysK4o9gnpwuVs
cSk3WbjXOL3lNVouwJ3jcE0WDDteu+WT50HIhffXQ2RhfRlxi/SpO4HHcsNk
oTDVLZt0RWpsuuRtWTw3GmdIn22sMMh9gO2C3pffkPm1XGW3ZL4sLLq19cpb
Mh901X/rFciCwA+jRNJLN+hF27+TBXGTP8Wk/azN2nPKZUFRNv4fafWAcyfs
ubIgavn9TAH6WuOn/3IGZWE0g7mnEL0+4FKWnbIc9Dyp/1WE/m0Ya+fDkYPV
cUni79AvprIk7y6Wg+pX5hzSHPc+p2p1OXi0c9FO0iKHLJh6a+QgyWXsOekG
QyUviZ1y0Pz0vG0xmT9Tefo5l+XgdGZQSglaJbOh81OgHOx5syifdIvbYPhA
kBzYn0+qJW3Wo9ynEi4HlK2WE6S1Gq9GhcbKwQN7+w2l6L+vrKbtsuTA0ymV
S/qm22i+RI8cyNju6i9DNxGxIsf75eBCnMssaQWKsVXloBxsZrtIvUenvIgd
ujIuBwtSVLVIvxk1VvnHLw+Dbv7epLs94wNHFeQBVirzl5P71dvEsnGnPLju
LBOoQHf4J3XfL5CH0siCxkpyveri3EvfyYPVyfM/SIsp35nuLZWHCEu1EdJa
hYFSWlXy4Bt8RPQD+vLfo7qlTfJw+PNOA9ILz6sF9o7IQ1mUeBzpI57pizQ5
CiCREru3Cv3TKc+x+KoCqIsovqom9+cHoxtqIQowf3JdAWl1jeq8m2EKcHO5
VSXpE5PfpBxuK0DmwyNtpAcCBfMEHimAohZLvIZ0yg7JzQUKIGz0+jDpob6u
rPJx7C/BVaiW3L8nqfNr7BThQf073Y/oQ5Z9rjOOijCbrU+QrtUpalzmjD79
xJj0s5mTyYGuiiAd5b2XtHNQ5Wa4oAh562vPkW5P9P/vVaQilH07kE/645ch
/uhyRYgYNVhbh07bVjV7ZIUS2G5YuvQTGX/nVboCE0ogdD+1rJ7cT6ktt67W
LADTG4s2c8n4HfZ4WGOijO+Cded5ZL7Oyl43yVOGsPem8Y3kfsi/G/VhoQrk
9/lGNaFXO5TtkAlC61481kzW81gGu3pCBUrFf2t9Jr8vYgSb71cFofovX0ib
CQ0o1heoQoCwgEcLGY8vnSWVahxIbeYT/oJ2i71OC7rBAX6Jn5dJV/MvHN4e
gXEcFgwkrXb09QeJWxw4N1/pGulOzZ6A8DscMG4wCyW9txxG7sZxIGf8USRp
o7Ff1cmpOK7HakmkmVttAkvLsY7GJZaR9nw+YhdYyYGIhqRy0nXUq+u2VnEg
2SS5knTI11fjVbW4L+cl1ZDm85R0aOBhP5FRPNL9cUVEB77b+p4d6iJtLLBH
PhHfaYtXWvWQTnQenHTCd1nun219pA9py6X14bsq4pjmIGluhafCKL4Legp/
j5PW1BCbysB77tPwnknSYbcSGsh7wMLnjVOkt9nWBE9NYZ59yJglnVzicOT1
NJ6bNffnSAsum97gM8uBOIVQvla0XVi44vo5Dkznec0jXfBr8Z9///Adk2Qv
SPp/927+lA==
"]]},
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJxFxW0w03EcAPBpjTAVImYPf3KlhbMTh7tmcjXyUCm3PFwME4WdcafiFC6a
p2RXTkhJrs5t3Umdh9LOdIxtV+nhUs7laWGuMfPUonrh+3vxuY9jAj+Ctw2H
w4X98/+G/ARjRlIZc+v70Ro/Dpbqv/XXsFIBhl2Bc9hROwmYED7ex4pdodXC
4sLDRVraU/gHV2I7T+uEc09fip+jyWHTtTp5mvsInNl7rVwjmIDdm0Xv2yUz
8FR4CnnMRwvXkIopD+N1sK+g4xlesQzLvtSd4h9YhxnlG0y74D8we9pvzIOD
Y22tdnt5bEljBOcahJ6vruJhE8ufqWfpBJigJLDNXxvDv1XitOrMHfAUR2JP
pZrBATcz0gfE5vCdjQ7TwDgLOIYsC/2u2wkTpYc0TpG7YZ5Xkz7K1RLOyb8c
genRN2ZFwyqVFRxK3/WEeM8arhB7S0O5e+DBM48M2b42sFTJL3fF28JtFwtY
ilE0NcTfJ6N9Lxy4GVvUmGcHJ31+s9gRaQ8zCwpfcDESXM1f6Caq0ePXH083
9jjAc7zOpN4SMqxNtzJRcimwJHjIkOxGhadTPLzxejSpdURUoqTBRfGCJmUI
Bq8Y7CtCOtEu3TW1g86OsFfi25OWQrS03sZOoUe7SG1Kw2Oc4DCChvKhB639
NimT0/fB/PoKa+EttMLI+deJ22j6ha5Bogg9yVAXVN1Fn+tnaWsa0EcXdYqW
VrRtUHRxXz86S6zlFsvR76xKjgQNoctGny8NqdC4LIvE4U/o2Qap//gEmo3n
ODRPoZtT5pd5anScJ0kyM4v+OJBFXlhAM9zNVtt06ErRg+FsPTr4vLJ0dRXd
IktM7lpHbz+4HpBnQHMrqyjMDXSPbv/a5ib6L5eKK9c=
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->{{0, 10}, {0., 9.999999795918367}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{3.6723805117800837`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"NAND", "[",
RowBox[{"x_", ",", "y_"}], "]"}], ":=",
RowBox[{
RowBox[{"inv", "[", "x", "]"}], "+",
RowBox[{"inv", "[", "y", "]"}]}]}], "\[IndentingNewLine]",
RowBox[{"ContourPlot", "[",
RowBox[{
RowBox[{"NAND", "[",
RowBox[{"x", ",", "y"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "0", ",", "10"}], "}"}], ",",
RowBox[{"ContourLabels", "\[Rule]", "True"}], ",",
RowBox[{"Contours", "\[Rule]", "10"}]}], "]"}]}], "Input"],
Cell[BoxData[
GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJy8vQd4VcXzN56EJCQBktyae1NviiAdKaF7FwQlVAmgIEgTpUhRQKQTRKlK
E5AmSBEECSglooIEkC69iaFXpSdASAjlvd+cfHbvzMn94u///71vnjzPeeae
LTOzszOzs7N7Yrv2S37Xx8vLKyTcy+s/T/73U5+MtD4ZV50UzpZw0vQE17+3
oO/9JfxCfoHigpY3SFj7M7P6Vgn3/Q+YZmftRUr49H9e94lh7cdKOCH/hzjW
XwKDFZ2FP7MlDHrpe38Jg15a3iAoH82svlXCoJe2Fylh0Evbj5Uw6KX9JQhP
41g4nepJ6c1m9GYzerMZvdmM3mxGbzajN5vRm83ozWb0ZjN6sxm9ejktfBwV
nfwJegGDXlrOIGHQS+tbJQx6aXuREga9tP1YCYNe2l8Cg9U8LFxO1ThyOvmT
jq+/pJfOczOrZ5UwHV9/QcfXX9Dx9Zf0Aqbj6y/p9aRnCp+HSk75OHI6+RP0
Uj1mZvWtEga9tJ1ICYNe2n6shEEv7S9BeNKjhesZNQ+5nPJx5HTyJ5VnA5Nn
A5NnA5NnA5NnA5NnA5Nng6SXwvhTepPrFT7vuFzyceN0AeZPao/Mgtojs6D2
yCyoPTJLegFTe4R+Ehis7GDhdkLpUa5n+DzkcsrHkdPJn3T+Wtn8tbL5a2Xz
18rmr1XS68nOF24HlZ3gepTrGT4PuZzyceR08ifoBQx6afuxEga9tL8E4cmP
KdzOKzvI7QTXo1zP8HnI5ZSPI6eTP6m+imT6KpLpq0hJryc/rXA/Rtl50Mvt
AtebXK/wecflko8bpwswf4JewKCX9pcgPPmhhftpyo+h+lnZPW4XuN7keoXP
Oy6XfNw4XbR99aT6OVbSS2HlZxfuhyo/DfRyu87tHrcLXG9yvcLnHZdLPm6c
LsD8CXopLKn24GcrP5TaI+63cLvO7R63C1xvcr3C5x2XSz5unK4E3VPr74QT
T1AOWOs/UJbT+gvRwVROjPI9YLzPRy/JJt83zv8hQgfT8vGC4qfwBn4a3ZkS
H8DoHzD6B4z+AKM9rd5j2R5gtAcY7QFGe4DRnoa3r6D88hWUP74C7QGm/PDV
0e1pHDhfPPGJ48npRr+e6MDveD7vd9DLf8cT9OM96OcwxS+a4RfN2nWw/hzy
ff4jI1a+B0zxiZfvAfN5wOXckxxyOeJyQO2f4iOtb9Txjb+n5Sw6/tL6FjYu
dl15vKfybZT8pv05JAx+0vIJOv5y/tF5a2DvzR7ppPaC029h9sPI+GGR+BXO
ZwvzR/R8BX6cr1TvWXV44T2Vb/U715ue9CjXs8/Te8/TY8/TS3Re6Oct+MXl
jrZv9ihn4BcfJ7zHk/OJv6f9RTN6ohnfHaw/h3wPecZ7wBSPeIZPvODjAxjz
nfOL8tfO6ifo+M/1Hp+Xz6Ob61GuJ/m8fh6fuN7lepXrhefxFTCV/3gm7571
NH/P5zkvz98D9jSufNz5ONH68bon3nM/jOLL42AnWFxI6QVa3+6Rb3T9kcni
SplsXZ7ppP77Y1keMNWvj53U//Vl/q8v82+Vf8Px4v3ydnlcj/sfPA7G/Q8e
V+B6jPYXzey0Q8KQU+73c7n0NI58HDifOR+pX2dg9kn5B7Q9ZVepPdLbOcgT
10sUn2jWr0PC4AdtL96jXad22Mzmk1niye08t6s87sPtKY2DndDJOZdjLqdc
TrjfxP0MjgePQ1G9YtPpfdp/NGvPIWHwm68bud7i8TQ+jrwfT3LPx53jxecF
lwuON1/noT6XG04H16Ncn9O4hVHCVB6usvVtNiufzcpns/WmN5tf3mz+eDN5
9Wfy6C/fU7ptTF/o8eR4UL0WyeZ3DNMLyi5r/cc9h2/ZTk4np4vTQeFI5kfE
ML4pvwD4/Pdxy3ZyPnO+cj5SOJL5MTFs3JRfAnxo+RAdXbxdT+PA+cDx4OPE
+cTx5OPI+cjp0OYL9N4FJ2DteV/C+dOszzMJa/34yfqanir2v9YO4I354xch
YW2+R0s4v/geh4Tziycquv7/tqPpJYOkC7DGv5sS5nTy91p/uU7afy5rz0fQ
+j6yf23cAii+Lvjf4sXx4P3yfgDTdoLlk9YPY+/tEtbai5Ll8+eB0UH72+Og
/aTESpiPQz76t+J0eHnCA/zgfOd85nylcJSEgT+hMyVWwsAPMOVrlK7d5/GF
9/s8PnG8ON84npp+3OnEE+8Ba/MzXAd7Ffzls29pPHsfKvkMew0Y78F3vKfj
cF+WA4xy0B94Dxh0Qp8Ahj5BecC0PPoJZv5PsHzPn7R+uCwP/tF2lRxAD+E9
YDo/owXlY7ROLvAeMPDm8xb4AebjTPkTrsOb0h0uf+dPvIc84HfAHA/aXzhr
P0GHD+YL6ASM95gfeA+Y0JMSS8c3JVbywxPe/Ak7zuNKfD+U8lmtWzS8TUy+
EG8w6+im+sPE9K5R9ztgPKEXOVy4flfjjXKU/zad3vfUD9rT5Nesg1Fe459V
B6M81esKpuUj2HrOyuLUYXKecT3maR7SeRqug7m8YNzp79gH0OsxwJ70mCe9
5kmP8XkMmOtdrpehdz3pZU960pPeRHnavlEnN57kivC3kHnO9QCf51wPYJ57
0gN8HmE86Tyy6eT8v8u1USe3/1bOIZ903R2s0590na3Xy8Ab7+n8tOn6RTle
D0+6zo7S6WuuP7jd4naN2y3AVG+q/W86rxIkTMvzeOdOtl+8k+03X3VS/txk
cZ+brHy2k/IjV5YHTONj3oz/Piwu5CP1P82DCZV+KJ0HAUzf+bNxC2DjFCD1
CNqh9UJ0egUwytN1ndIDgLmcQg7wHnqTlldxJq43aDxI5T9Svl5wUj1xgc0X
/Kn8MhqHv8/82Pu6/DOUB/9QHjDPT6P7Hn5s/vixeF4xNn9DGR9VXNCTHeJ5
TjROGM3mbTSdRwlsv0r6k+ES5nk2KJ/ffWKcLA+Yz1Oen8f1CNcv0Ctcz1C+
xsjy0PMkjml0sPh0LNVTKSwumqLym4A39RsUnfnVbik6AVO9m6DTUzQefYLl
tWI/xsTkGvH3TJb3minLUznGPvNjWR4wylM5RnzdV6A8YJSncox4daAsT/cz
TFKuaT6Knm7Q4YlO4O2JLuDpiQ66r6PHW3tGs/rR8r32u0O+B4z3ml6Kle8B
4z3mJ523+n4Ag3903ur7BUz8kj0Oj3gARnnMU77vAfsP+aN+zk2Wh5wpy+M9
9XPuOyk9ubI+xpH6T7kShnzS/n1YPpwv8/99mP/ix/y2ALYPFMj8oADmjxWT
dHE6OF68Hzovg9m4Kj1P2zEyelTeHOX7Bckn+DEc1tpV+R2U7/pxov0+dlI+
6ceF1vcVtH39ONBxDpTl/zvfw6jfrouf2RjfsU+m9gnhVwOm422T85LSE83w
i2L4RzP6HLI87A7pZ4+CMQ+JHKfEyveYlxTPeDmvAaM+7A7FH+vMcJ3fxf0I
Op+iWb96uum+qqLLE90oD7oJnoXQ7YlOwEQO3eiGnSVy7xZn0uhLkOX5POFx
AMwz6rdc8OgnAga/qX3V+4n0vd7Pfp7f6Mkv534l5pendQTtT62/Ofxv5xX0
i6d1FI0/6NdN0B+e1kmUHv06B/qW76dDf/B1LeSc+42e/ErIrSc/EnLnSS4h
t578SIzH8/x2/h7zjfDJzY/H/MJ7Ot9CpV6GPiVxUDc/gNt1bqe53aVyqPwa
orf3KD8GeFG9bpLjBBjjQvCS/nswk5MQBsP/QnzAzOa/Ra4zaRznJnufLd9T
ubbIdSOt7yNofX82rwJkv7SdC06KZzbz2+/L9+gX76neUefjqF/pJ/Gg+RwW
plfUORvqT0cL2n8s1eNSLtU5Dryncqnyfeh5JbMcf4p3DMXbqPxf4EHicikM
9kJesbKb0BP03IYaHyJ/bnyieTN2XX6GZv/UeU3AGC/63p/uA8p8GXXOCzD4
AJjuY6vxwHvwHzD1FywsL0HlP/N5Qe1oNls38H1gM7O7VuZX8HhnNrPD3lTf
etlZPoVJ8oHq+Rj5HnzAey6n4AveczkFH2D3MC9p3Pa+hDHvAGOe5dPXHvbZ
X7bH9ST0Mq0fyvwatf9I9a2V0f0/x5PjxfHg/dDy6gk/EzDkk9Tf45Aw9AHh
s4zD6NsFP/PbTYzU9YP3mn6IeW6/nM8cDzpP1T45ftfaMcon1TfBLM4fzPRe
qITRHsqT+V+I3SOwnK/Yj/HyovpGv3/oqV+6T6Ho4fsdeP88ujgfgA9gul+n
9ATV++GCyO+tMPkEvahH5Tac0RfB2otg43uC6elMppcyWd7MY+b3PmZ5N76S
X4Ap/wPle7pO1uPB++X98HapvYDeCGFPrm9CGP9DmJ03UD/XLR+Y4hPN+ld5
K9qT2ydlN9CvJ7zoeCk5peUtOnvD5YvHtfg4UvvjqxunwueB3UO/Ecyeqbwz
Guezszgez2u16/hM5UvPd94PH4fn9Uv5zf0AvZ/D7TqV4+f7PVq/2J8MZr+b
PNp5wNSP4/nNPC/NxvI2lB8BmPsR3G+g+Hv209AOlfs4as/SfOUTv2vPaAbr
f9foKaLhlYL2i0pYwzdQlsd7wHjvqR6BU2BPSsgnftfspk3+/mW+3Y2h9YVD
wvn0Zis4H595Cs5vJjlWwvnsSY3V4UH7LfJcOgHnj9OtSAlr7UTp+O2pHPD4
v0Wn5vcUk79rchVE6d8De1swX4yh8gl84Z/ALyJ4tI9m7TG8B8VL/ubjeUTB
KEfyIlNU3gXKeWqHzusQ5kfwc8H6coRft4zSL9D6MUm6yTzZE0r9B9CZqOpR
P8PI6FV+COrhSfPC9HlIsDvcT+blyH6uq13v/H4L8syM4RIG/p7kBHLB6Qbs
adwAg27wAfho8m5hfLTKev9WzmAXPa0DQa+mN73ZvA9g+g/5EYoPZH0MOenj
JdvN/93rqROw9v6Zk/MZMO0visqF23qR5vGY5bqMxmVOOKlfctNJ/WYe58l0
0vVOrnwPvGnc5TFr34fNLz/mp/vS9ZKMs5o9xPUC2fogUEc3zbvh563MOroB
0/VCpi7uxmFK52PWnqIbMF2X+cr3nG4qV4ovWj39PjjnC+SEw7R/FU+j8WcF
U//WwfShg+lDfRyMriuVvwSYjrNVhzePM/E4IOhAfU4H5rsnvAETvrjRoenx
OI94A+ZyRvXuCZ1c4T1gss/mFieBXKE8kbNErF+eOrlcwZ5ocKCg8zdQ/o5y
HM/C9+kzPdJR+Lx/rNu/5XhweeTyxuWHrsfjmNzo4zf/W+1C32rPeEH19vP1
OvHncO4oxcD0W4D8HXYH7RRud6KYX6j3j3h8isfFvAr+qN68qtsH4HH/58X5
tf7M1A+W+XTqvjkqT95sHvmzcVN5QfT+AnUPF6kv1ykqPk3lM47Vt+j0D4//
ox1tfFRcm+L9P6cT+kV7r+JUgDG+6JfqfXXPHt7TefY/H1cit7p7N9X+DY/T
UL1s1uHH9T33S+m+v57vvD7Zp0xU6yRiD6ZHepQTtEvjmOp+LMxP6En4u8Tf
k/s2JgnDD0U92CG8h12h9eNZv/40rjw9ksLGGDb/TdT/9VL2D+/JevC/4EHk
cam6J0fj1wV2r9BNp9ZOwTqozx12z9B9CcNvQnmtvTz5HnJH2/eR6ykNryIS
H5qfwPE6LfsBnp7w0p5Zsjzw9IQX9Dxt30eHF6XbVxA+YR3nWicBxvoZdojP
cw4T/GR9C8sHMD2nnzDdvEI9uv+q9k253kS/aA/rSMgVzS8wszwhs1zfoT6d
BxG6eto6MFw+6X5Fgf0TDmYP1bnl/OZSVZyA8rvgXEgEixvI8xpRchy191Gy
XqF4uO2b8H4oHM/idJ72QczMXunHietdPm5k3BPD2PiqPCbQD7wKt0Px0p4C
H9BH9adNpz9RDnEDXg4w9BjKI46F99BrgKHXUD7/GRgn3zf6z7NbHG0/ycb0
pWoX79EubwfyoPHtMtMj/0hYo/OBhLV2cySs8dX7f60dwIgTEnlOjqXzIz2O
8c8o44/4/d+2o+lLL9kO7Bnlk9qnI3ZSxlWV3qJ6U+17Yp5AHvEeT23+qTgb
YNh7rm+0p53NIzv1I5faJMzjUoDpfr5dvifx3Qwr7S8xjO0zh+nGwxNfOV8A
U76EMf6EUfsg+1d08/1X8InzAe9JXoyUF0U3YJQn+2GYb4nqXBjNdw1n/A6n
eGdYqZ1xK8fzIvi6iOrTAGnPNDzVOhl6CvqLrnuCZD20T/JZ2kfL99Az5P08
h3wPPUPwCoyT76mdj2J22EHxF8r/Qz9EPlNiqf2WdtEk+6X7lhdY/OGyhOF3
0X3Sm05i313+IZX/+0467g9Ye1m6PHEyP1z+I/QI5BN6A3QAb4rXaSeVn51s
vZPG+jnM8LrJ8PpHRyfl033Wf5Z8D7poHnKOjk4e96F+k1E3z4ldSzJ58BNt
VC7d8nD5PEZ9wHjP/QqNPuXPIZ5N8Y1j/cTr/BdP5eg47dSNE/qleTY2Hd20
H/3+gie6qL9iYv6IifkbfF2oylF7apLzldijFDUfqb010X1JLzOVYxn3OMzO
Od2U7yGndN7ksvp5rL6P1PuavBSRfNXeF5XzjdY77aT24j57n8XwesbOXz2V
70kczW29TPWvr8QT/iTVnzG0fLaD0RGnk0e6b6/i6tQ/iJLtYHxJu8kq3kDy
DPaEUv8nge8zq3vIiNy1N7N4npntI5ulnwqY5l/CXkYyO6vu8Yf+AF8Aa/0h
XoJzGyfYdwdOOOl53AtO6t+bGD9NVG+7xS0AU/9d4UHrs3hKt4I8zgnqXkpP
ePN+4FdBjvm9DvSeJy8vWl7FFSDHgCGnmIf4HfMOMOYZYIwb6KV5REbp96A8
8EN5eh7JKPUz7U/lwQNGecg5wVfuXxsFmce3jHQc3PYpOV6cDsDoB3R5ogMw
ynO7A/vG8/xo/COCrmfc4gjQt4Dzq0fEU7uZqPY76DgVkfMLMOYX8MV76Asa
77PI91QPqDgFX0fzdTLsEtZ16Jf6m6F0nevqB/NAs0cG2Q5g2Gm6rmLf30lX
5cE3wJ76BYxynvDw1C9glPeEB/SvNm7BUv/xcaH8MtJ1Snuld/k6h8z3RP7d
JqX3PdkB4IX3kHc6X21svtl1eBF/MzFM0sXzDrmcAob953JL9bo6h8zXbdxP
1trPcVI7B31+2eO6APyl8zlc2jVuxwCTuKP0+9Pk+TzuB6Mf0E3zMcyyPl03
/+Ok/lGOhPPRdIvvUH/mAfN/vJh999fZc6onzHJew65p45LJvvuT6aR68ybL
OzXr6CTzCP5Yehzzr9Q9FzT+e1/ecwW5xfyjeTYK1t5bqR5z04OgwxOd+N2r
4A/2i67zrrL6OH8WJetr+D6W7QKm8etc+R52CXKH+Zj/85F4Nj/vs3F47PTU
L2lX3gOh9BI9P2Cj890tTwJ0U3t+U1svufxt6tdkS3yAL+phfHk8HnRzvxL6
C0/k0wHGfgT0AMU3W/YLfkNP0fHzljDoQT3gB38AMJVb0OnL/Hxf5mf46Mrh
dy4/wIvyW62fIJ/Ub/DyouNwVeYPYB8WepLvgwMm+ccp7DtWyK9LUPl2Gl5x
EgYefJ+Vrx+ofCVImOw3J6q8bGoH7MIT3eAbz3/j/jnoAgy6PO3zA0+NTqvU
s5ifxL7KfFOTLId6np6Qd94O5E3DJ8up6W+jwFPDy8zmtYrzwQ6hHfCDzIMU
dQ4DTzr+Kt9S07dq/NEO2iX+its93HRdqX5/Xj9oD3JB4Wy27mHfQ12q7hkG
jHEFTPw0yGV2gd0+YqP7iIXkzebjXb5gnTvBLOsBpnmy6pz59AL/CHLC+U/k
cqnKPwMM/tB5coLFszJZ3PGx89+WK3y+RbK4+AOZB8L5zs+XPm/c+DgAJnrO
LY7C8/7ovkmCzq5BDuj+d5xOLrheIvszrvU2jfMZPf5O552F+vUpVkZfgpz3
5PcUK/PD4T+F0aeXsgPoh687IIeU75ksD+Exizf4/utygDX61Xks3i9+Rzku
Z1TO1XdVAGvjzfPqbP+6Hp0vejsD/cPtIeYd7CjRY/8DO6npBeTdFOSjJBfU
v1VcPvE7yqEeXcd7Sz0PP1/rp6jOr+dySM+HQL4K8mMHxVM6ZH6QRRengZxy
e0PjmirvhM4nlX+EfTGeN6XNC6X3NDmKo+/d8o7IOKeZn9uOp3qA6Xy5oMsL
ovPgvi4PiMwLl19J6/uweeH3/6wf0l56HLUrEfG6cSfjOCiezof2ZqZ3lJ7j
eTjUDykYn24F5yQjVB4M5q3Wjj7fhttv2AFif/5FO+gXeEDuQSe1EyZZv3B5
1eeBUHm1/cty7F6uQIwTm3de3A+2y3KoB/q0p7ovlseZ+P4593dInMSo9rtB
P9+/5vvVfH+a+6mF7j+nKP8G84Lvo/J9Ur4vCj6S8XNrh+8D/tt2AYOv4HM+
Py4XxHMGIQ/IIt8DJu85HoNUO7wenZcOKi+4H7y9fj8PdNF4Uy577yP5w/fb
+P4a30/jfgrmo4Y39lFLSDumPQv0QWCBP3eZ3/tV8J2ppeqeHQ2fBDYfmT5y
2zfi+wA8zg88ib48YpLjyusR+ynvR/KR+EO+oUegZwDj6akc+AS+YX6CX+iH
9ws+kn2LtH/o9xDc4nHgF/QxkfNstc8NP4f0n+Av8YY/xGEqP2adv0Dl1Kp7
T+eFgjV9ovKtaf6On6xP4p4Z6p4QvCfnD73UPRDUXwhl7YfK+nhP878VPURe
ZTzSRPchvNj8ccOT98vbpXyJpHxLY/cDut1zB7kjeTlL2T12E+xy35PmqUTL
fkgeuVs/BI9sfb94z/nA57E2D+N1eKI+3mt6yyj1HfXXDrN1J/9+804n5gvi
8ZgPmp6746T+S658r7Wfx+65CmZ2MFiuSzGOgPMfuu9eWKS+4etFbd6q+0s8
tUvPU1uknNL2DBKmekB9x4778dyvI+8zrNSvT1R5QtA/wI/mX1vkOJD9U9e4
kfPCbvsC2nhnyXHAeojDGB/QT/kSyuZvCNUrUr6hD9S5eQ0fdi44Sa2XCt1X
6cP5qPrBePN8LCLn040ML32+KN+XI+Pr4gPdh3tMz5ndUufNyXyS+5GKrxgH
ut9i0PEJfIEepnKuHw+uf/l7/I7xAox2C+WfWz4ut2Oa/rAxPqtz4VQvKBjy
TORTFMh3qtof0OjPkXIK/QE/jO+j0XtXHsh6RH7c7v9DPZq/n8veq/v8qF3Z
ye7vO+yk+5WqXehBum7n9wjmsfqqX40PRdi+q7rnEHJD82ajdesCnndK9Z+F
2r32at+K4OGWN8vtEeJ4gJEP4el3Ui+bfaezvbKTyKMAnF8uUPULf4zyI57S
NSiezvtByg6Sfv5Fv2Rcb6l1WP7PEfE6PAidg+KZ3k5zEn0nz/n946TjnSNh
bb566+IFiEeRcb0VyeQghtkVz3l4mlwi/laQ557K7h9x8ycx/6FXyLpzqfqO
ijbPrTJeQOfBBSe1o5d192DS9cMDNs+eyfcarPaN4CfSfTUllzxuxv3VQv1X
t3vxoDdBB9Ujp3V0UZjf65+lo5PSxe/1f6qjm8fdOZ6A+b31dJ/WIv1jio9F
t57z5EcTfrn5t1x/YL5Qf1PND43fJaQ90egOZuNRgvUfrPPjtHrqHjzou8L9
RnbPDfIvhD5ugPfaPInVrYO4vSXtpejxoHkrBl38meMLvwN84HRT+xDM1iWM
j25+HJ0fys5z/5Sv6/k5QW1e8Pv1YPcKvoczL1TSDTzouladc/akh2i8i323
bI/yR7nfw/UWxofrNfCZ61+UI/ULWYdzP4n6B4pPJK6QbpT7pNSvUfk7oAt8
8hRnQHm853nw+fgl6+UXfiO1J6FMDkJ0847Xw7675key+7AxjoHqCb+Or+e4
/oHeQr2S+XRE6Pxu7vejfH5789S818af37PL43qXWfzvNPPz/mF59Pc95p1x
vQ+7T/SKW9wQep7i85Sdc/GR/ILfQOa5m19J3vO4SiF5cLArNK4SINvX+i8q
Ya3dQCkH/FwA/EK6/g+UdoD718ATfKZ8uaOL23L/G/XBZ7Kf4tJLPM7L/XPU
B99o3LaIoP37CD4udJyL6PjG9wmo3Qv0yFfwjdaPkvjyfUvoDR53pnGjKNkf
P1cB+0jwEw6Kn3CwcWbnPZJjqX1KUd/PgD1Fe4CJ352hYCqPCm+Sn5li1a2b
4P/zdRTaI36AGx880Yn1A6eb8ClF0QU+eKKT551qeitOxwcat+Dr0tPMT7zD
3iv9Q+2z3s/k+kN7D31wgrWTyfp57OT1aP6Hiq/moxmh1lFELuS+QAE/0xWM
ejxuQ+PmVxmczfSAmtewn3Se+bLx9dPpWWqH9XqRtwOYrs/9dHoT9eHvAcY6
77/KqVc01ePZDoqfmxzSvH89n7megV/qVfBH17tXnRTOZnLiTfWiW9wVfgLJ
W3Lz99Av2Vd0u3eW6Cvkpbj5x9zvJHlMKer+HO6H8Dguvc/Myu5t1MfFSB5s
ilW3LtfoVnqA+J3TI+m60+0ckMb955zrGqTyonl+Co0/mZh8mgvHxw2mcTMr
k191Pwnhh9t+F73/3SzXl4BRT/PbwuVT04sFcjBI2T3oC9APOQYMfcHzbjhe
PC+G843OBz3fnrePx+XOE5/5uUO+T0nWE25xX6yzNPrVvQMkHu2l7leAXzy9
wE+m8Xg7fT9BwVivoB9tPEy0nfLqvgN+XwHRf+VVu2gH7ebjnWyVMPx+9INx
Jv7GkXiqD2DvCylH+OTGN/TrKa+Uyw/sIrUvmcxPfczWF77/uhx9rz+fAn2h
0WWi+QP/ZR+L5oGaBN1nusD2mQrODQ0yyXH66z8MaRYn+8W8xDyleBulXGh8
NtL5mqLuB0C/qAf5xfoS+/okz1uEU32SpvYzIL+gi+6XnWb7nFfZudPLuvf/
1q8AXfid0qnupwMMfhA/wsvM4AR6n9ERtb8GGPYU/Wr1w+S6kuwHYZ2Zoe7F
I+vY8mY631LU/W+AaX6nuv+N0qM/V4x+eL4BYCJXicXl757qwb4DJvvw7dW9
g1S/q3vdyL682/2GxK5ms++HDlPyj3GkfCouYeKPZCj9Tvi2VOUveOIrYPCV
wEeYP93erKMTMPDW5k8MnT9udAJG+Xy8Sqh8Kp6vABjlwSfMI40Ovo/t5YX9
Nzovdsr74VAP/iD0LoXT2H1O6lwn+E/8qgQD9atS+PdS7HSetlfnxPi+MNrj
+QF8H5Kfc6N6N4/GB1P4dzOMrN0QWY7ywaqz29ADkEuNjjC5ztCe6r5/lEM9
/O6pHvYFAEPONLm2sfmn8qfIvqGXgjX5wXnRIPm7p3ooh3pY99P+1Hc2NP5E
Sz8E63q0T/YJ8b2ItQ7ZPtUXdjZvCvyj8w6Gj75dwCiHfjy1S+ejTfajyYG6
5xZ2AjDssiYnPrp72Hk9lEM9GmcxSBjl8/GNUPYf61PQQdarko4YSndyLJ1X
yew7Jj1jWX6CHg/AxA+JiPKIB2A6rjEe8QCM8sAL9hR4ASb22ujF+OMnYcTd
aX6Uguk+SsG+jgiVT7pPZ5Aw+kceJPrDPEZ5zHPA+WC3MLk/TOgqpB7KoR7s
GeYf9CjgfLwiTJSPE8xyPqIflEc/gNEPlwdON2DC98BISo/bOAFGeU/jRvAo
hE7IC+wF8ATdyGcGDL3JYbSv/W6T/jdgzlfYA8Bkf+8Iz5e2eeQzyoPP5HyC
y++FX671nyP3/wBj3a7xAff8/+Pk+9D/3+KK6rvwgLV5ALsbKO0DjVsEyXoa
/kGsXjSz3+w77uWjaXmX3ibl3e6By+f7pw5ZXpOfOBoHc8s7yaczK1aWp+s3
dY4PMMpp4xTF5C6a+pPt1X4Xp1Nrh+URCYV3/ri9oejU5rnKMwKM8vn+3+/K
T9X6VfkY2Mf4r7/LOK+aJ6CH+BuFzAPAaIf4I8lW+Z7cVx9hY34N7t1U528w
L0j7XioPAvECgn9GLKMnnsWR9PlK/7ZdT3lPaJefsyB8c4Mpfp75hPLgE+FD
IXyCHuB5rV4Ff//TuDEd/wDJJ4w79ff0cg//lLzPUPfQIX8J9AAGPRS/cMrP
NOVnevJ7NTzUPeOUTp4fdV+XF4Rx0er76fQavT86SI4j/GIaZwxl8dtQGm8T
Kr8U9stTHirRO/BDBpmYHKnvS0PeQAeNtyk6+LkE0EH5EMr4oM9TJvFUoegk
eLvpG7yH/NC8Mpb3NCGalp/nYPsYbP9lrYP2H6juUdD87TiqBxxxsjzPM9TG
QZ+HSOTgi3hZH79z+8vzLTjdZP80WdENP02Lx0Xr7CCpP0/RDT5wO0j4FhhH
5dGh7Cank+SBJiu6ET/Q+KrPu8K+L+RZ46M+P4bKiYGOT4rat4L/C/1K4+Tq
fAKRnz18Hqp1P81vgfyG6/Q39CH0jdZPoISpvVXfzaP55Wr/AHlbmC+AMb9I
Xld79Z0K8IPEHwJx3lKtDwBjHABr7eQxPzKA2qlC6OJ0g06yTnG7Jwe/07iY
Oj+OfVrEfwBrco97OhQMPUb3e/XtoBzqwZ+EnMBea+tXdd6d/q7u3QKM9sn6
2+08PC9H1scTIJ/sHkdXO4ivQk7J/ZIyr0udx9f0SjEJQ540PEJk+yRun2Kg
+8op6p5+tIP5A/kBjPf5xbup86aQB+gLcm+Wa/6QfaRC6CLx52TPdKIfYt/K
49y+ypdCXLLwcz3sXmSsyxK2yu9Ta/KpvxdNK3dYd08a+gVMv8tyw0n1R44s
D5juP+bK8tp89abrSbc8NO3pLfWTNq4+TF9xvqh9EK29oh73QaieM3nM+6H7
seq7ZphvOD+c39yRKAlr/aj3PC9Ieyp/nu6Xs3z7NNUO7CPwxnvU5/n58BsI
Xogjyu+Geev2cSj8zEnwdssfBAy9q/H1iYQ1vJ6yfUjoVQVr/DNReZffY9XX
w7qc1wOs6eU4Np4Bcl7ROLov3WdOLCr5gvpUv7J9yD7Kr4UeAAw9ALnEe/AP
+gp8Bt9BB/QDxh2/a3pL6Vm8B30oV2g9t/iuhlcR9r2QItLeanwrIscZ9QDT
ehh3dV8PygNGeWL3AlU+DvwIyCdgjd4C+ysUDP8BdhjyApjkSaSH6c770/kZ
6hEP4seke+4HcKH3CiTye2DMzJ6oOD1gjc92GTfRxlHdjws5A0zzV/X3RMIf
Ap7ELiep77qQ9X6i8hsgj4h3AR/U89Sup3YAI75F6Cuh4uL8d8iNJl/e8onf
tXihisPnk12bxdnlfR+RlI5C6mnzVsVtwU+NPtyHqGDMN/hdVE+V8OinkPmV
7tlvgZ9C3rvNC00vqHsMoMfIvlGGgon+nqBg4od0C5PjBT6AL2QeDDJRvzpb
nwdE4nDdwqicIj/ussJDoy9cwnxfk8aTcV5Qlad5X2Ee65F4DOxXIe3A7pJ1
mbBIO0PnG/YVFQx5oPPIxOIrKp6sjYuKF+eXX6viqvlP17qWwIi3Doqi7ZR2
UD00T+3P0/1DE5uXJl2/+e3PiqXzAecuvRRM6mfFUnsEvKV/cZn5F5edRB77
XJGwNm8uSv9Eg/n3TU4zf+SUhDW7e07W12D1/RPAtPxdJ5Ejr9uyPjmvkaFg
lNf0fTbD5z7DP4vhnyXLa/Yzk/lb92R9zd/Ik/UB0/p5jJ+PnOCTJz564htg
rCeInsH6Qn4HZJksr+G1lcGHGR2HmRwcY+P+B+PjP+z7LH+z9m8w/O88Z9z1
40z7z/I4bp7GicI5bJwfsv5yGf55HsfZ07jS9p569OM1fPR+O4EHse/TJFtp
XCSdfR+wkHEETPHSjyvao/61535pPode79J8DvU9GE96EHoO5aHHPOk56DHS
vsyvjWF4qHwp6m8gLyyGrnv492YEw8tNn2v+gDpnChjlqR9kkvkGxJ9N1Z9T
JfjNUudHtPEqSvcdsc6GfUhUsDZu+N6wynOl5wzVPYtkHzHFX7aDfXPA8Ddp
HLoYXeclFpfl4X8C5vsogOk+Zowsj3UVoTPbQf3vbLUPCr8V5fOf55Ud1fwG
k4w7gP+AybrzSBRdrw6Kkv1Cvuh6QOENeaN4x9DxTI6l45ms8Ib8AIb8aHiq
/FGad4u82GLU7p9nfsURlQdM82R3elx3Atbmo5HpLaPUa6jP16EkHivzZvyY
n+8r18VoBzDa0eRa5Tdp/FDraHq+Q/EH9Wk+uspnpudE9PXoedaCdWCqgtFu
fnvd1H60p3UmYG08bFK/AMY6FO2gXToeCRJfrR6/5zRetsfXkSTPIV3l2ZDv
AwWqPG6N7wrW5M1zXjfJ+05Q6x++zwIYfCH7griH2g0v5Dfm/45z0Ii3ZytY
s3/qu1F4T8ajkHVafvlC1mXEjrrt86AeyauB/1nIugrxfBpPt+r8KsDUj9H7
WajP/RzA1N578Htwj0Mh62xNjkpQfeJaJ6BfwNQP168bCD9dfjrqcz/ek98O
mPq5aex3vd8L+0bnub+kT8PDX+p52DvAyIuGXAKG3s5/DIsrGF+L1KuAIRfo
n5/rgZyQcxa4f6m8yo+H3HM5R/yM+mOhzN8KlXEKkp+YqM7RQL+gfTJ+yWq/
D3oA9TV5Ufc0kLhEtzDm1yGPWe2HYV6DD2Tf5ojavwX/NP4oP47Gr0w0ruZ2
7wSdJ+peTdAD+wm9BhjltXYyZXmsY1AeMG0vS/dddbSnwY9lea39PJY3j3XH
CVbvNKuXKd9zPDiewOO/4/mY0Z3nEU+al6fu98T+tDZu2PcNZvk36l6KfDIT
VXuAEbcFPogbAR/AFJ9QKqeufmi8lt83GCLxxntPeFN9b2H6XZ0zBN6e8ASs
2fNYlo8bK9ddgNG/9oyX5fPrR8TL8oBRnpTL8NwuWX/IPDDP7QLmeVR40jwu
u4RBv9ZOAPueYFH23fei7PxyIPN/VB4ByqM/wOiHyndRj/2iXU/9Yn+RjmOM
7vvipD2Xn0fac8F4r+l31R7WxygPmPPFE90avVFynLRyUWx8olh5m6zHywEv
0O2JTs4HTidgMv579HQif4zO5yCmH4JYuypfAfJI8VZ4AUZ9yCXBwwVTfqs8
IK5XUA71NX2gvmcD+4p5BfvIYcTp87tJV/F/9A++cD4AL+gxqlf15xJQH3iT
+38C1XfkwUdPfON85XwDrNmfZ+w7aE/peSkXjP0y5LWhPP9OFb+3kp7LP6y7
B5KcB3fZQbKf54Jp/TzdPZA077eItBscpuMRyPJmWd67cND3bnnc0MOe8rbx
5HnuPI9dG884KR90XPVyDLtF1wHqfAfZj5L3TwVJ/4rstyQbZByQ2M32rJ0J
6h4PojdS/Om6L0HFySmcxfJensrvFyJvFfqM+v12CYMPPC+W5qmGyHkKmOQ5
dlZ5jOT8eorSi+hHa78EG39+b2yIrn+U0+RB3c+FfuCHgI/UPihY0y/qXAvw
A92IWxE/PiGWrhuyHVIOAEMOtPGPle8B4z38EOKnparygKlchUo8PPXL8eL9
AkZ7wMNTv4CRpwo/CDDkTJOnBKnPNb6q8oBR3lM7gNEO2vXUDmCMJ+YVmdew
J144R+8t4x0a/d4yHgEY5VBP05Nesh5g1ANM/HIXDP2cj6ex4HydWx4s1uua
/HrT+ZTC89WK6uKuPI5K49lq/wP9YV+N5P269D/Nk8tkeXd5LO+uIL6ZruIB
z+ML+OqJ79BDnF6SJ51YVPIH61t6vqMEzR9HXCBZ3T+E9+AfuW90XgzNV892
UHyS1XcE8/GvHSvLIx5C9HA6ywtfofLCoZchxzQ+o9fTsBP51SLUd5sxLwCT
eTE9Ts4j4IfygGn5MFnPUzkKI35wVa6LNXwvy3UxYGpn/5HvSXxPtpctyyMu
hvKAqR3Jke8BAy+0y/HgeAIPT3gCL7TH8eB4Ag9PeEI+wGfAXD/y3wFrcmKS
81ujR+XV4j3mN94DpvXzWP08xjdfdn4J+XnqXkGNrtOyXcAop8FZ7H0Wu4fy
qXwPmL73lXKHfRSUJ/l/XupeGeznkHy4jDT2Xdu0gnHxoXoM+ysT7B7nGWDM
G9hVMk/2KBh2lbSDcxqB+u+j4z0Z9wR1Dz+x427fLQeM8igHPD3hxfHmeHG8
OV6A0R/w9IQXwVvKm5cXxpXkebjlkdNxV/eZAqbyqu4rBYz+NDy8pRzBLqE8
hS8z+bws28X8x3sS3/dS9+ugX9hFOk+92LwySTkm7crveat7M6FntPEtKusD
5nzhfNPK/+0k8XYXnzzxUWv3oSxP/KZC+Jj/cPkzKE/34YvJ30m+J74zKu9Z
Ky7LQX6onPhLOwb7ifUB/24QuY/H7b4a1Ie/QPNz1XdxtP5VnBD+Aon/u30n
B/MK7wHTvEh1zhN0Yt+frEfxvYPyKr8e7/ObS4yT77EPo+F7QRfnp/Mgk8a3
l5pY/M9M4y5yX0jF36FXYWcQpwBM48H6eCz0BfZF6H1o6rsZ2Cch+Z2J6l4X
jAtgsu+aFij3M8k5ei8Vv0X+fX71I+o7s2gH+y1oh/zexyF/x/4y5r82Dwxy
PuSjg3NlbnFgek8V9GqkLM/jkMAbdJBx6uNg+MVI/OD34j3oxHv4udo4wY6E
SLxoXM0h9T7iMND7gDFvqbzjfJuC8Z7upyhYGxcVh6B+mMrPp3ZJ7ePReaDO
X6EczTcKk+s1vKfrEpUnll+8m4JRH/zCuGIcse+H95ATIhd7vNj3twMlnRgX
wke3cQH9wJPEEbqpfU/gCZjqTc90cZjEc9I9843SEy3xghz9V7mZ52B8UHE4
1ONxOdgHrMdhD+g5VXznxC7jrprc2dl9oApGebSL+Uf3u6OkPoXepXb0tLSj
WJ/T8lk6P5ra3czn+M1PmV1/wvwA5TcDpnZa3YMMPQW9q7UToFtXAEa7GnxX
4qGNS57HdYhGVx7DW31XHTDKa78XoXYzoRiLlwRRe5EWTemaEM3oUuMGmIyD
W14c7DLRG2sd9P5+oew0YML3N1R+Guw4mU+OONmeph8851HiHhOqJ9V9yPRc
RJTUh4inwy8ATPMUFV355UqzOH5KLG1/VoE9SVX3cmjlFMyfxD+IUPE7zEtP
85Dcvyv9kGfU75Df49Hvu0BPcL2AeY1ykAc+z6k+UHYJdgp2Bu+pfIZIfam1
o74vAr5q8x/ndGKpHUO82e0+Je4fkPpHVBwc/ZO4vlvcHf4v+gOM/jR5VvFy
+L8oT+LSSSpfBeXhZwCm+UG+0t+DPkL8jPqJfuz8kYprQ+5JvlpElCxP2pke
SdtBXuAeFX/X+Mnj4YqfPA4NedX47yPtusY3da7Iq+CP3MuRscxJ7KjXMQlD
r9L4rfpOBPQ10bsufQ37SfKjcO9UebPHODZgDV9/Gi9NVPFWyAOJd5ZQ8dL8
ZoaxezJkvq0vPXcmz4Oq852QA5Tjfi70KfxYjBPWldArwBv6FuXIPaDTVb6X
Nv4XWBxRfT8F7YOPJC8zTd1frdkbdT8tzfNXMPon49eN3VOdqO4/w/oI8sfP
v/F4PYlPT1B5qID5faB0/WSW6yead+egdvhTZfc0+YyV7/Ppy4qV9pqeYwjS
2VfCl7WqH4wfsa+OOObHqHt08Ttd/6hz86Tf0vp7dYn/VTuW9psSS8cH59Uy
/Jmd9JfjA7kh+Vm4N3ie+i4e3S+Nof5Kgtr/wXwj/sItFtfbo+KB8HMQLwUM
fYVyaB/zl/pLJqln6f2Ziu/U/4mhcpAcq+MzqV9C8RV2m9g/tzxCEne4pfLn
qP0KZfNG5elhfkAPwq5Tv8Eu+yX51C68UB4wXV/nyfeAodcIXgkKxjpHay+a
ro9wb1iCyjch9gp+rIyXMX9vnj7viurjYOlHau0Hs/WbPq8CeonYf7c8Wegx
ngdE9Gq6WpfjSewt7N8tVY/kX7jlTVG5d0h7D3nV6FTn6UEv7ATkGzDGE34m
jU/5ybg29bvj6fztHM/2gfH91lA6D+X6NU3KCeYT6IYeI/6lPA+g7heD/SLy
4ILRrsa308/BQ52P0X4/7MT4wT6AjxpfA1meQCDdt3JrR7MP7F4dL3VOAH6r
9oyXcgUYeGC80Q7wB6zpG5X3hf1l8Ivkf2RbqH/qdn9VPp2u9QSRQ5d/ROQZ
97GuiGP+vS/TP+xeVje9AD0DWOv/idZvqkE370geXKK6TwLzDvKs8feybp8U
77GPgfeA+bk5ej+QP4vLFmXrxxhqp/ooOwa+83Nt9L5BZdcwLvR8voHGb1LU
eSfwC/pBozOeyoVLjiCHgLV24J/bqV9bXvlRgHkcE3qU2LelJaQ9I/oY5zmS
1P4X3mt4qX0kwET/4X6sJLVfpNGbJePxGh8znTyuBXmGfUL8nayHhIqLwh5B
/mFfMD8Ag5+e+EL9tGDmN4SwdYlaJ0OeeZySrgdUfIXGzdh3AH5X/gX0oie9
CT1J56NN+kuYxxgfyA1gjAvNq4yi8ATl7xO5kfcZq3O+mDfcn8J7zBO6DoQ+
RryQ+SsZ+u86QM7y8QsMY/EMZY9J3CtdHxeGfeUw6oOfsK/Al353wU7PJ0ao
exXzq1eO1/kJ8AeIHyHv7QW/giVM4jjyu3ehzL49Zfr/mby3EflsxA7JuEGc
7A8wievL+3ZV/jLGE/OErDNlHDxG2j8atwmT/iHFP1qOJ/wx4Ity0JekXrry
00AH/CvQAZh+z9lP6mfA0N+wJ5Bf7qdrclFEwphveKIfwOgH8w79YP5BbhEP
gn7T6Irz4I/HSHrp/oXKuyf2KcLG1mFhdFyRv7lU3dsEmMp/FLWDbvdqI44L
/DH+0BPoj+IfLZ9kv9ErWvYLvYRxBN2ww4AxXpBTTX7i6PvpCgZ/UR74Qn75
POT9En8nW+FF7r2T5wFiZHlOP+gmdCZFyfFE/2Sdk6z0AvrDe/B769IbiR1b
w755ea0NbGFJ9Q+TcMmoO4abJ9T3lT7Z2cL6LE3dK2g7NN66Y4dJxgXKbV+9
fcAo9V0eyOOhxaH1S7v8/E+3f/VD9L14Kqeuctvf3+tfpJpB8m3iw5b2Rf0M
cjyu3hhde/wr8OuvOiet332neWP1fagvrM9S+9ZR+StrnnT/2fSiylcfV7HM
8O5F1XfiOs79edWvLVX+VU6/G+1PhqnvWn730ttV0/Kssv1hra3DZ91U3xMa
M/aX8DFV1fnWpF7vXthfBHraLurkzrq03RQmfhFVXipTX90LCvy+n9a67OVc
lx/zff0Dt3ap7z2NCKpSPHCuXcKTot/8tMh9k5SPCWtDBlm/VXkgTRP//mtT
hsr7XrxwXvPBU1Tex4StaWUT96nvQzm/CWsY/an6rlGbV1O29olX59Nji0eG
1d2ivh81cp8x/K8hVglXuxA1OPSkVbw6ZMW+kxHe4sHSTO9LG62iyumizdrO
8hf1G3+Xk/SZVdTxKfed99ViYvF7s7MGPIsXX3RqU2Goq5/W26pPGdo1Rgwu
tnfddhddu5ptK97WFCvyBtUeN+mMSbR8Nema6Xy8WPL59AOl0k2yH/SLftAv
+kG/6XNa38sZFSmSf/v6s6g9VvFX7S5936wZIzZkHUgKXu7ic/KMNinPXPPg
1i8Hk6ZZxaAb+7/46d040X5t8oTGn1jFyZU/eRuGRwpH3dONl3xjl+2gXfyO
cqADdKEf9Au6QCf6BR7oF3iAT+Ab+AC+1P54a7u7vY2iXIsDgRc+O+Ycd/5e
wye9jGLMw63flH39lPPNZuMzmw6IEJmbFlbafuewc9G9rR0qtjWKunUulS5b
567z4I6qKQ9bGcX8hXP/+jMqy5m+Z0f51++Gi9gPVmRMaHXXWfTO2C6/nAgX
yTHzrmW2z3I2rrHo2PTaRrHJ78DlftXznOgXeKBf4IF+0C/6Qb9oB+0GLa0x
+F6YTezf0HR562Ih4oMHTcK7DbGIqUHrr8wbaxQ//lThSsKpcDGp7/z0jFfV
d1EnXv314179Vb5Pa6tzROwmozgcUPPdyHB1DyXaQbtPX5wz8tU96vtTvkOu
Bo5ZpL4vBTyAF+Z3ZFpY0xFLLOLZP4P6RzvUdxyPn6y5rbJfhGj5Yduu1i8s
ku8YB/AVfAZfwWfQBTrRDtpt7f1a36M/xoo3n3wY326+TdS6vqrBqkrxov6c
0eUtQ23yd5TD7yh38fF7A+t/A3/ZV64nLEPz9q98U+Vn9p7zQ5POldV6E3xc
MSP7pd/7qe9d4T34CD6AL9BzvarXsTxeo75PDDz671pzJnei+u4XHwfombKl
zsYtft8m8QTewBN47zhRf1hOF6PU27aSiTGVGqk8aNiXMn8W+WbYUJVv3i95
/MO/xtrEwW++/uv7b6LFwlr2Lyta7eLt7IHeD8PswnClXu/LC6LFwNBTxYdv
MYgSvRq8XM8QIA6k/7PmxDqD6Day3DfJswNEwpHVl5faXHo95cbuv8ICxMhh
X3wQXsIuJkd0G9DunQBZD+2gHtrxvpi6x1gnSrz2w6BRo/42iA+8p5zfey1G
nDndsPmyBQbhWDDJUCfRIdK3/3163JcGcenO4lVvf+0Q7Xyn3Dg3xiD7BR7o
F3jUqGtZVGNWlFhm+yPY3MwuBl/3apZXxCGW1T/zerdLNtkv8EA51AMewAt4
AC/gAbzQLvqxtVxY/8AUP3Gs1sBeQ24axK4Le5dvHRQkPppZ4b3PPjWIvdkT
Fn57FfHiYFH2+17X805Fi0dfl6rVbKNB3Ft1d9LAudGijtNy3H+LOn9r77fZ
0n2EQbSZPPFU+Dtq33lF6L5P5843iQp/FrlyY1mwePzrzZR9XuqcJNb3J/uN
+Twn1Sgqdmp99Mj0UDE4c3Dkuz+FievHemecn2wWw3M39PH70yaOe5cxiuZW
8cPGr25l/xom/fQrq7JfunpJfU/72z98pw0ZqX5HOdANPoBu8GF73BcHvpof
LOo2Wr/NZ5PiA/gCvEEH8AYdwBt0gA/gC9anxW79urhiaZOkC3SCLtAJvmMc
wHeMA/iOcQCd/aOb3hz/yTXn9+W2+234OFxU8e3y+8XJuTI+k/bKry2ctYuI
99dMOtplv52te4qJz3essF7oo/y7LOOAQztfVO2in7Z5Lerdtz9wrt2w9UaV
9eHiJZ8dnTekPHX+OGH78EGVVVx73oQlu5Z8aBf/dKhRLuTTCFFi2d7X21rV
edUevs3+PHbNLsrcWHCrbSd1DrvlGeu+txe71in+SZueTj3q9Lqwbt2GFur7
sx3Sxxjen20RjXv/8cHWIXedoVtSp+e8or5HmzV+VMVKEy3iD68mx95xPHa2
n7+zbMsq6ruzp9/ZfyNkoEV4LxPnmt0rIvb9MrHFBbs6N3Dl6uiJS1+3iJTa
5/alDQ8UTX48NMPR1GUPr959VPRRoLD49MpMu2mS8QDgCbyBJ/AGnsAbeAJv
4Am8gSfwBp7AG3gCb0slx4auLjwrdokbNdSF97peJ1Nm5gaKmv3OHG7X1CLx
BN6HNq8KbXU/SqwaGH4zsKtF9Pww487C4tFiQMPpN6xd0H60aDRlU94EX7MY
OL7bwCodHKL4W+1L/NDYIj7vusJkTHGIYZ2ye3klWWT87HbJLq3mXjWJcXMf
7YnfFitGhq7yjq9tkXYjr3Pera1HTOJ++q1Ai6tfW1BKhY4uPFbM2zsr0NVv
lYglDVKLq36Bx7UVD6OPu/rt8kPlJw1deDxsfjXsZCOLONDrpc0lU1S/wCMq
c0WT1jUtYtbrm58ueKD6BR6TGolWc7zD5DjNWRl2d/99qxyXpo9qRy+/aJXj
0OXIrm3F96jvOw3sV27UrAXqO07Qc9B7aBf9oF30g3bRD9pFP2gX/fT2cV6N
eFF9D2rjtk0HW25R542RL/BT0Sbf+HaxidGGPi1XBlhZnDFM1M19r/rNhirv
d1bJ6e0rr1ffXTpWZUnVF+ao7y4tbtE5asg4q/iqXsSy1mXixdW7hiJhlSzi
8pTOL6T3iBc1zr+8YVQFi5zHmNdoF/2gXfSDdtEP2kU/aBf9HO8499SGD20y
Hga9Az0EvQM9BL0DPQS9Bj3H+Qi+gY94Dz6Cb+Bjx7lnt7zyRa7TsevSzsjB
4VKPQq9Cj0GvAW/Q8efQhqc3fau+DzXJOP4Pr25qPwT692mZ9h+V+lp9L+qv
sI/6vj5NfS+qxzeOsKxRFlF98M/H6rdW+yMVRmZXq19P7X88+Lhf8bF56ntS
vSJ/nFKmooXFB7xF868ct71ijMLyzuq7Lb7zp/cWuNbBvtnXRh56YhAjwj4K
frur/ntTDy4sb5aTp86h9J46+uCV/i49/e6lJfXuqLzh2WPCXmi3Wu3jgr6Y
b+p0XPB1uPBpYLxa/6H+e1IW71MTX3kxRnw5e+BH51erPPt+Pf85P7yKRfqV
m6+1/e1RafA3QUyq2PdAWDu7yLQ0Hnw1xl/U65n0Z+qbdpE4r5G/sZy/aL0g
56tWHU0ivO5vx8e1DRXt/rhf7KPSVrF/+Ne2Yz1Cxdv7u/3Y6s1QYQhO3jSu
k0n+jnLLMryeZfazitf6vDZD9CwhNt7y6/dBR6s4k7atyaYBweL3w88+vnDS
LF5KTbuyaXKoaFT+3Y6nPzOLaVsmLO+70iBWvTR+Ue0Mi7CXcIaETTfI31EO
9J+t+/7L7fcYZTtoF/0CD/QLPMDn3aVLbvglyiKqWveJyRfD5BP5Wn+1H3fj
dNEI8ULt6PVNvLCu8xVHpjlajrrAv6/jK8shntzy4IIJn34aIgZHv9Bl3xj1
HZ03x0emzlyrzuFgnoUmVjnmbXGts+vXtHcdqfLvgS/kZmujV0/WXRFF99nc
5Ah04XfgCbzBN/ARdIJu6KXhrcuWePWgTfaDfvE7ytn8Pvn8yEmVJ47ymDc7
Bq6vWase9GywLPfxX/cP/lbfLn9HOcg18JuQXPGNZSvUvv2tTs+6fzfShfeW
pwdff+IrPg5sMehhbV+x7o0pa8/NVr+j3Na7PX4eXx7PaLHs3MS8ci58T04Y
Xv7OJX+xbmLb0T8sMYjulh99urwWKOrOzUy3VLOLSot/qzGnYVFZDvVQDvW6
vl1l56ilMaLSLssfS5caxJiaXY8nN3IIvwG/r/x2qkE8/rLOodDHDnF58v1a
Mz8yiJBPho7tnOUQrzQb91LQxy5597kU9tIchwg7cbfuEJcf3q/KnmFLX4sV
M4/1WZ3WyyC+Or9k/4iOsSL88OnUWd1d7U2836l6eqzY/GZW9tO3DKJ8q9EN
3vk6ViytUepI204GiTfoCLEV+3P61kgxpvjLv0wb59K/nwYMq+wXJRJqD3rj
n/52EdBhTOT5X6JEzpLhl2Ia2mU51EM51EM51APd4APoBh9AN/gAusEH0A0+
gG7wAXSDD6AbfADd4MPlnc1XB84uJmat+jmvWUeDWPFisR6zOwUJ+2s/1gwZ
ZxA5d2sZ24gYcWT5d7eKrTaIp0nObvVcftbG+PnJ5Q4aROdmD0rH/qzyeCot
u+A80yle7C819NbMQTZxqdrFkC+mxItOZ/b7VhxgE4v/eaNqudvxonnLeaX/
6G0TT8ZcMb60MV48Krrvha4f2MTIQ3vLd5+jzh2hHbSLdtAu2kG7aAftXl9w
vVFrb3XvGJ74Pbf/k4DPhhvEsdLvX6593Shafdnw71JfGMT4+BfvTT5vFHcq
Nf3yxadGUc326jTHDJvovG36o9eOWaW/8nPXI9/ZEsJFn6tbhlXqGyH5CL6C
j+Brv8ol/qpTM0QYc6NO3xsXKukE3egH/YLvGAfwHeMAvmMcxMVci/WWXdxa