Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Segmentation fault (core dumped) #6

Open
sondv2 opened this issue Feb 28, 2020 · 1 comment
Open

Segmentation fault (core dumped) #6

sondv2 opened this issue Feb 28, 2020 · 1 comment

Comments

@sondv2
Copy link

sondv2 commented Feb 28, 2020

environment:
Ubuntu 18.04
GPU 1 card 1080ti
When i run python network.py and got error:

Traceback (most recent call last):
File "network.py", line 62, in
int8_calibrator=int8_calibrator
File "/home/xxx/anaconda3/envs/tensorrtserver/lib/python3.6/site-packages/trtis-0.1.0-py3.6.egg/trtis/trt_backend/torch2trt.py", line 126, in torch2trt
File "/home/xxx/anaconda3/envs/tensorrtserver/lib/python3.6/site-packages/trtis-0.1.0-py3.6.egg/trtis/onnx_backend/torch2onnx.py", line 147, in torch2onnx
File "/home/xxx/anaconda3/envs/tensorrtserver/lib/python3.6/site-packages/torch/nn/modules/module.py", line 839, in load_state_dict
self.class.name, "\n\t".join(error_msgs)))
RuntimeError: Error(s) in loading state_dict for WrapperModel:
Missing key(s) in state_dict: "model.dla_up.ida_0.proj_1.0.weight", "model.dla_up.ida_0.proj_1.1.weight", "model.dla_up.ida_0.proj_1.1.bias", "model.dla_up.ida_0.proj_1.1.running_mean", "model.dla_up.ida_0.proj_1.1.running_var", "model.dla_up.ida_0.up_1.weight", "model.dla_up.ida_0.node_1.0.weight", "model.dla_up.ida_0.node_1.1.weight", "model.dla_up.ida_0.node_1.1.bias", "model.dla_up.ida_0.node_1.1.running_mean", "model.dla_up.ida_0.node_1.1.running_var", "model.dla_up.ida_1.proj_1.0.weight", "model.dla_up.ida_1.proj_1.1.weight", "model.dla_up.ida_1.proj_1.1.bias", "model.dla_up.ida_1.proj_1.1.running_mean", "model.dla_up.ida_1.proj_1.1.running_var", "model.dla_up.ida_1.up_1.weight", "model.dla_up.ida_1.proj_2.0.weight", "model.dla_up.ida_1.proj_2.1.weight", "model.dla_up.ida_1.proj_2.1.bias", "model.dla_up.ida_1.proj_2.1.running_mean", "model.dla_up.ida_1.proj_2.1.running_var", "model.dla_up.ida_1.up_2.weight", "model.dla_up.ida_1.node_1.0.weight", "model.dla_up.ida_1.node_1.1.weight", "model.dla_up.ida_1.node_1.1.bias", "model.dla_up.ida_1.node_1.1.running_mean", "model.dla_up.ida_1.node_1.1.running_var", "model.dla_up.ida_1.node_2.0.weight", "model.dla_up.ida_1.node_2.1.weight", "model.dla_up.ida_1.node_2.1.bias", "model.dla_up.ida_1.node_2.1.running_mean", "model.dla_up.ida_1.node_2.1.running_var", "model.dla_up.ida_2.proj_1.0.weight", "model.dla_up.ida_2.proj_1.1.weight", "model.dla_up.ida_2.proj_1.1.bias", "model.dla_up.ida_2.proj_1.1.running_mean", "model.dla_up.ida_2.proj_1.1.running_var", "model.dla_up.ida_2.up_1.weight", "model.dla_up.ida_2.proj_2.0.weight", "model.dla_up.ida_2.proj_2.1.weight", "model.dla_up.ida_2.proj_2.1.bias", "model.dla_up.ida_2.proj_2.1.running_mean", "model.dla_up.ida_2.proj_2.1.running_var", "model.dla_up.ida_2.up_2.weight", "model.dla_up.ida_2.proj_3.0.weight", "model.dla_up.ida_2.proj_3.1.weight", "model.dla_up.ida_2.proj_3.1.bias", "model.dla_up.ida_2.proj_3.1.running_mean", "model.dla_up.ida_2.proj_3.1.running_var", "model.dla_up.ida_2.up_3.weight", "model.dla_up.ida_2.node_1.0.weight", "model.dla_up.ida_2.node_1.1.weight", "model.dla_up.ida_2.node_1.1.bias", "model.dla_up.ida_2.node_1.1.running_mean", "model.dla_up.ida_2.node_1.1.running_var", "model.dla_up.ida_2.node_2.0.weight", "model.dla_up.ida_2.node_2.1.weight", "model.dla_up.ida_2.node_2.1.bias", "model.dla_up.ida_2.node_2.1.running_mean", "model.dla_up.ida_2.node_2.1.running_var", "model.dla_up.ida_2.node_3.0.weight", "model.dla_up.ida_2.node_3.1.weight", "model.dla_up.ida_2.node_3.1.bias", "model.dla_up.ida_2.node_3.1.running_mean", "model.dla_up.ida_2.node_3.1.running_var", "model.hm.0.weight", "model.hm.0.bias", "model.hm.2.weight", "model.hm.2.bias", "model.wh.0.weight", "model.wh.0.bias", "model.wh.2.weight", "model.wh.2.bias", "model.reg.0.weight", "model.reg.0.bias", "model.reg.2.weight", "model.reg.2.bias".

@layerism
Copy link
Owner

I think you have to modify a little bit in the torch2onnx.py to match the name in your pth file. The file is in backend/onnx_backend/torch2onnx.py. I didn't carefully handle the name in dla34, many authors will change the layer or re-define the module, it is painful to get each name of layer match.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants