-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinstance_metrics.py
54 lines (43 loc) · 1.8 KB
/
instance_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import torch
import pytorch_lightning as pl
import torch.nn as nn
import torch.nn.functional as F
import clip
class AestheticsMLP(pl.LightningModule):
def __init__(self, input_size):
super().__init__()
self.input_size = input_size
self.layers = nn.Sequential(
nn.Linear(self.input_size, 1024),
nn.Dropout(0.2),
nn.Linear(1024, 128),
nn.Dropout(0.2),
nn.Linear(128, 64),
nn.Dropout(0.1),
nn.Linear(64, 16),
nn.Linear(16, 1)
)
def forward(self, x):
return self.layers(x)
class InstanceMetrics():
def __init__(self, device):
self.device = device
# Load CLIP model
self.clip_model, self.preprocess = clip.load("ViT-L/14", device=device)
# Load aesthetics predictor MLP head
self.aesthetics_mlp = AestheticsMLP(768) # CLIP embedding dim is 768 for CLIP ViT-L/14
s = torch.load("data/aesthetics_mlp_weights/sac+logos+ava1-l14-linearMSE.pth")
self.aesthetics_mlp.load_state_dict(s)
self.aesthetics_mlp.to(device)
self.aesthetics_mlp.eval()
@torch.inference_mode()
def compute_instance_metrics(self, pil_image, text):
image = self.preprocess(pil_image).unsqueeze(0).to(self.device)
text_tok = clip.tokenize([text], truncate=True).to(self.device)
image_features = self.clip_model.encode_image(image).float()
text_features = self.clip_model.encode_text(text_tok).float()
image_features_norm = F.normalize(image_features)
text_features_norm = F.normalize(text_features)
clip_score = (image_features_norm * text_features_norm).sum().item()
aesthetic_score = self.aesthetics_mlp(image_features_norm).item()
return clip_score, aesthetic_score