From f26fa3c64aa75f65aba291903c8e2b33c9284d6a Mon Sep 17 00:00:00 2001 From: Svea Marie Meyer <46671894+SveaMeyer13@users.noreply.github.com> Date: Tue, 22 Aug 2023 17:47:51 +0200 Subject: [PATCH] Allow np.array as input weights for Sparse (#772) * ndarray as input weights for Sparse * docs * codacy * remove implementation details from docstring and from tests * move tests to corresponding classes * put weight casting into extra method * Removed unused import --------- Co-authored-by: Mathis Richter --- src/lava/proc/sparse/process.py | 37 +++++++++++-------- tests/lava/proc/sparse/test_process.py | 50 +++++++++++++++++++++++--- 2 files changed, 68 insertions(+), 19 deletions(-) diff --git a/src/lava/proc/sparse/process.py b/src/lava/proc/sparse/process.py index d8c52c7ce..0f702d398 100644 --- a/src/lava/proc/sparse/process.py +++ b/src/lava/proc/sparse/process.py @@ -3,7 +3,7 @@ # See: https://spdx.org/licenses/ import numpy as np -from scipy.sparse import spmatrix +from scipy.sparse import spmatrix, csr_matrix import typing as ty from lava.magma.core.process.process import AbstractProcess, LogConfig @@ -21,8 +21,8 @@ class Sparse(AbstractProcess): Parameters ---------- - weights : scipy.sparse.spmatrix - 2D connection weight matrix as sparse matrix of form + weights : scipy.sparse.spmatrix or np.ndarray + 2D connection weight matrix of form (num_flat_output_neurons, num_flat_input_neurons). weight_exp : int, optional @@ -55,9 +55,10 @@ class Sparse(AbstractProcess): spikes as binary spikes (num_message_bits = 0) or as graded spikes (num_message_bits > 0). Default is 0. """ + def __init__(self, *, - weights: spmatrix, + weights: ty.Union[spmatrix, np.ndarray], name: ty.Optional[str] = None, num_message_bits: ty.Optional[int] = 0, log_config: ty.Optional[LogConfig] = None, @@ -68,9 +69,7 @@ def __init__(self, log_config=log_config, **kwargs) - # Transform weights to csr matrix - weights = weights.tocsr() - + weights = self._create_csr_matrix_from_weights(weights) shape = weights.shape # Ports @@ -82,6 +81,15 @@ def __init__(self, self.a_buff = Var(shape=(shape[0],), init=0) self.num_message_bits = Var(shape=(1,), init=num_message_bits) + @staticmethod + def _create_csr_matrix_from_weights(weights): + # Transform weights to csr matrix + if isinstance(weights, np.ndarray): + weights = csr_matrix(weights) + else: + weights = weights.tocsr() + return weights + class LearningSparse(LearningConnectionProcess, Sparse): """Sparse connections between neurons. Realizes the following abstract @@ -90,8 +98,8 @@ class LearningSparse(LearningConnectionProcess, Sparse): Parameters ---------- - weights : scipy.sparse.spmatrix - 2D connection weight matrix as sparse matrix of form + weights : scipy.sparse.spmatrix or np.ndarray + 2D connection weight matrix of form (num_flat_output_neurons, num_flat_input_neurons). weight_exp : int, optional @@ -148,9 +156,10 @@ class LearningSparse(LearningConnectionProcess, Sparse): x1 and regular impulse addition to x2 will be considered by the learning rule Products conditioned on x0. """ + def __init__(self, *, - weights: spmatrix, + weights: ty.Union[spmatrix, np.ndarray], name: ty.Optional[str] = None, num_message_bits: ty.Optional[int] = 0, log_config: ty.Optional[LogConfig] = None, @@ -171,9 +180,7 @@ def __init__(self, graded_spike_cfg=graded_spike_cfg, **kwargs) - # Transform weights to csr matrix - weights = weights.tocsr() - + weights = self._create_csr_matrix_from_weights(weights) shape = weights.shape # Ports @@ -189,7 +196,7 @@ def __init__(self, class DelaySparse(Sparse): def __init__(self, *, - weights: spmatrix, + weights: ty.Union[spmatrix, np.ndarray], delays: ty.Union[spmatrix, int], max_delay: ty.Optional[int] = 0, name: ty.Optional[str] = None, @@ -201,7 +208,7 @@ def __init__(self, Parameters ---------- - weights : spmatrix + weights : scipy.sparse.spmatrix or np.ndarray 2D connection weight matrix of form (num_flat_output_neurons, num_flat_input_neurons) in C-order (row major). diff --git a/tests/lava/proc/sparse/test_process.py b/tests/lava/proc/sparse/test_process.py index e26c22ae8..7fba10171 100644 --- a/tests/lava/proc/sparse/test_process.py +++ b/tests/lava/proc/sparse/test_process.py @@ -15,7 +15,6 @@ class TestFunctions(unittest.TestCase): """Test helper function for Sparse""" def test_find_with_explicit_zeros(self): - mat = np.random.randint(-10, 10, (3, 5)) spmat = csr_matrix(mat) spmat.data[0] = 0 @@ -41,9 +40,19 @@ def test_init(self): conn = Sparse(weights=weights_sparse) - self.assertIsInstance(conn.weights.init, spmatrix) np.testing.assert_array_equal(conn.weights.init.toarray(), weights) + def test_init_of_sparse_with_ndarray(self): + """Tests instantiation of Sparse with ndarray as + weights""" + + shape = (3, 2) + weights = np.random.random(shape) + + conn = Sparse(weights=weights) + + np.testing.assert_array_equal(conn.weights.get().toarray(), weights) + class TestLearningSparseProcess(unittest.TestCase): """Tests for LearningSparse class""" @@ -72,9 +81,28 @@ def test_init(self): conn = LearningSparse(weights=weights_sparse, learning_rule=learning_rule) - self.assertIsInstance(conn.weights.init, spmatrix) np.testing.assert_array_equal(conn.weights.init.toarray(), weights) + def test_init_of_learningsparse_with_ndarray(self): + """Tests instantiation of LearningSparse with + ndarray as weights""" + + shape = (3, 2) + weights = np.random.random(shape) + + learning_rule = STDPLoihi( + learning_rate=1, + A_plus=1, + A_minus=-2, + tau_plus=10, + tau_minus=10, + t_epoch=2, + ) + + conn = LearningSparse(weights=weights, learning_rule=learning_rule) + + np.testing.assert_array_equal(conn.weights.get().toarray(), weights) + class TestDelaySparseProcess(unittest.TestCase): """Tests for Sparse class""" @@ -95,7 +123,6 @@ def test_init(self): conn = DelaySparse(weights=weights_sparse, delays=delays_sparse) - self.assertIsInstance(conn.weights.init, spmatrix) np.testing.assert_array_equal(conn.weights.init.toarray(), weights) def test_validate_shapes(self): @@ -132,3 +159,18 @@ def test_validate_nonzero_delays(self): DelaySparse, weights=weights_sparse, delays=delays_sparse) + + def test_init_of_delaysparse_with_ndarray(self): + """Tests instantiation of DelaySparse with ndarray as weights""" + + shape = (3, 2) + weights = np.random.random(shape) + delays = np.random.randint(0, 3, shape) + + conn = DelaySparse(weights=weights, delays=delays) + + np.testing.assert_array_equal(conn.weights.get().toarray(), weights) + + +if __name__ == '__main__': + unittest.main()