-
Notifications
You must be signed in to change notification settings - Fork 3
/
run_classification.py
622 lines (526 loc) · 25.1 KB
/
run_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
# -*- encoding:utf-8 -*-
"""
This script provides an K-RET example for classification.
"""
import torch.nn as nn
import sys
import torch
import json
import random
import argparse
import collections
from uer.utils.vocab import Vocab
from uer.utils.constants import *
from uer.utils.tokenizer import *
from uer.model_builder import build_model
from uer.utils.optimizers import BertAdam
from uer.utils.config import load_hyperparam
from uer.utils.seed import set_seed
from uer.model_saver import save_model
from brain import KnowledgeGraph
from multiprocessing import Process, Pool
import numpy as np
import faulthandler
faulthandler.enable()
class BertClassifier(nn.Module):
def __init__(self, args, model):
super(BertClassifier, self).__init__()
self.embedding = model.embedding
self.encoder = model.encoder
self.labels_num = args.labels_num
self.pooling = args.pooling
self.output_layer_1 = nn.Linear(args.hidden_size, args.hidden_size)
self.output_layer_2 = nn.Linear(args.hidden_size, args.labels_num)
self.softmax = nn.LogSoftmax(dim=-1)
if args.class_weights:
weights = eval(args.weights)
class_weights = torch.FloatTensor(weights).cuda()
self.criterion = nn.NLLLoss(weight=class_weights)
else:
self.criterion = nn.NLLLoss()
self.use_vm = False if args.no_vm else True
print("[BertClassifier] use visible_matrix: {}".format(self.use_vm))
def forward(self, src, label, mask, pos=None, vm=None):
"""
Args:
src: [batch_size x seq_length]
label: [batch_size]
mask: [batch_size x seq_length]
"""
# Embedding.
emb = self.embedding(src, mask, pos)
# Encoder.
if not self.use_vm:
vm = None
output = self.encoder(emb, mask, vm)
# Target.
if self.pooling == "mean":
output = torch.mean(output, dim=1)
elif self.pooling == "max":
output = torch.max(output, dim=1)[0]
elif self.pooling == "last":
output = output[:, -1, :]
else:
output = output[:, 0, :]
output = torch.tanh(self.output_layer_1(output))
logits = self.output_layer_2(output)
loss = self.criterion(self.softmax(logits.view(-1, self.labels_num)), label.view(-1))
return loss, logits
def add_knowledge_worker(params):
p_id, sentences, columns, kg, vocab, args = params
sentences_num = len(sentences)
dataset = []
for line_id, line in enumerate(sentences):
if line_id % 10000 == 0:
print("Progress of process {}: {}/{}".format(p_id, line_id, sentences_num))
sys.stdout.flush()
line = line.strip().split('\t')
try:
if len(line) == 2:
label = int(line[columns["label"]])
text = CLS_TOKEN + line[columns["text_a"]]
tokens, pos, vm, _ = kg.add_knowledge_with_vm([text], add_pad=True, max_length=args.seq_length)
tokens = tokens[0]
pos = pos[0]
vm = vm[0].astype("bool")
token_ids = [vocab.get(t) for t in tokens]
mask = [1 if t != PAD_TOKEN else 0 for t in tokens]
dataset.append((token_ids, label, mask, pos, vm))
elif len(line) == 3:
label = int(line[columns["label"]])
text = CLS_TOKEN + line[columns["text_a"]] + SEP_TOKEN + line[columns["text_b"]] + SEP_TOKEN
tokens, pos, vm, _ = kg.add_knowledge_with_vm([text], add_pad=True, max_length=args.seq_length)
tokens = tokens[0]
pos = pos[0]
vm = vm[0].astype("bool")
token_ids = [vocab.get(t) for t in tokens]
mask = []
seg_tag = 1
for t in tokens:
if t == PAD_TOKEN:
mask.append(0)
else:
mask.append(seg_tag)
if t == SEP_TOKEN:
seg_tag += 1
dataset.append((token_ids, label, mask, pos, vm))
elif len(line) == 4: # for dbqa
qid = int(line[columns["qid"]])
label = int(line[columns["label"]])
text_a, text_b = line[columns["text_a"]], line[columns["text_b"]]
text = CLS_TOKEN + text_a + SEP_TOKEN + text_b + SEP_TOKEN
tokens, pos, vm, _ = kg.add_knowledge_with_vm([text], add_pad=True, max_length=args.seq_length)
tokens = tokens[0]
pos = pos[0]
vm = vm[0].astype("bool")
token_ids = [vocab.get(t) for t in tokens]
mask = []
seg_tag = 1
for t in tokens:
if t == PAD_TOKEN:
mask.append(0)
else:
mask.append(seg_tag)
if t == SEP_TOKEN:
seg_tag += 1
dataset.append((token_ids, label, mask, pos, vm, qid))
else:
pass
except:
pass
# print("Error line: ", line, line_id)
return dataset
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# Path options.
parser.add_argument("--pretrained_model_path", default=None, type=str, help="Path of the pretrained model.")
parser.add_argument("--output_model_path", default="./models/classifier_model.bin", type=str, help="Path of the output model.")
parser.add_argument("--vocab_path", default="./models/google_vocab.txt", type=str, help="Path of the vocabulary file.")
parser.add_argument("--train_path", type=str, required=True, help="Path of the trainset.")
parser.add_argument("--dev_path", type=str, required=True, help="Path of the devset.")
parser.add_argument("--test_path", type=str, required=True, help="Path of the testset.")
parser.add_argument("--config_path", default="./models/google_config.json", type=str, help="Path of the config file.")
# Model options.
parser.add_argument("--batch_size", type=int, default=32, help="Batch size.")
parser.add_argument("--seq_length", type=int, default=256, help="Sequence length.")
parser.add_argument("--encoder", choices=["bert", "lstm", "gru", "cnn", "gatedcnn", "attn", "rcnn", "crnn", "gpt", "bilstm"],
default="bert", help="Encoder type.")
parser.add_argument("--bidirectional", action="store_true", help="Specific to recurrent model.")
parser.add_argument("--pooling", choices=["mean", "max", "first", "last"], default="first", help="Pooling type.")
parser.add_argument("--testing", default=False, help="Do we only want to test.")
parser.add_argument("--to_test_model", type=str, help="Name of the model to use to test.")
parser.add_argument("--class_weights", default=False, help="Do we want to use class weights.")
parser.add_argument("--weights", help="Class weights for each label.")
# Subword options.
parser.add_argument("--subword_type", choices=["none", "char"], default="none", help="Subword feature type.")
parser.add_argument("--sub_vocab_path", type=str, default="models/sub_vocab.txt", help="Path of the subword vocabulary file.")
parser.add_argument("--subencoder", choices=["avg", "lstm", "gru", "cnn"], default="avg", help="Subencoder type.")
parser.add_argument("--sub_layers_num", type=int, default=2, help="The number of subencoder layers.")
# Tokenizer options.
parser.add_argument("--tokenizer", choices=["bert", "char", "word", "space"], default="bert",
help="Specify the tokenizer."
"Original Google BERT uses bert tokenizer on Chinese corpus."
"Char tokenizer segments sentences into characters."
"Word tokenizer supports online word segmentation based on jieba segmentor."
"Space tokenizer segments sentences into words according to space."
)
# Optimizer options.
parser.add_argument("--learning_rate", type=float, default=2e-5, help="Learning rate.")
parser.add_argument("--warmup", type=float, default=0.1, help="Warm up value.")
# Training options.
parser.add_argument("--dropout", type=float, default=0.5, help="Dropout.")
parser.add_argument("--epochs_num", type=int, default=5, help="Number of epochs.")
parser.add_argument("--report_steps", type=int, default=100, help="Specific steps to print prompt.")
parser.add_argument("--seed", type=int, default=7, help="Random seed.")
# Evaluation options.
parser.add_argument("--mean_reciprocal_rank", action="store_true", help="Evaluation metrics for DBQA dataset.")
# kg
parser.add_argument("--kg_name", required=True, help="KG name or path")
parser.add_argument("--workers_num", type=int, default=1, help="number of process for loading dataset")
parser.add_argument("--no_vm", action="store_true", help="Disable the visible_matrix")
args = parser.parse_args()
# Load the hyperparameters from the config file.
args = load_hyperparam(args)
set_seed(args.seed)
# Count the number of labels.
labels_set = set()
columns = {}
with open(args.train_path, mode="r", encoding="utf-8") as f:
for line_id, line in enumerate(f):
try:
line = line.strip().split("\t")
if line_id == 0:
for i, column_name in enumerate(line):
columns[column_name] = i
continue
label = int(line[columns["label"]])
labels_set.add(label)
except:
pass
args.labels_num = len(labels_set)
# Load vocabulary.
vocab = Vocab()
vocab.load(args.vocab_path)
args.vocab = vocab
# Build bert model.
# A pseudo target is added.
args.target = "bert"
model = build_model(args)
# Load or initialize parameters.
if args.pretrained_model_path is not None:
# Initialize with pretrained model.
model.load_state_dict(torch.load(args.pretrained_model_path), strict=False)
else:
# Initialize with normal distribution.
for n, p in list(model.named_parameters()):
if 'gamma' not in n and 'beta' not in n:
p.data.normal_(0, 0.02)
# Build classification model.
model = BertClassifier(args, model)
# For simplicity, we use DataParallel wrapper to use multiple GPUs.
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.device_count() > 1:
print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
model = nn.DataParallel(model)
model = model.to(device)
# Dataset loader.
def batch_loader(batch_size, input_ids, label_ids, mask_ids, pos_ids, vms):
instances_num = input_ids.size()[0]
for i in range(instances_num // batch_size):
input_ids_batch = input_ids[i*batch_size: (i+1)*batch_size, :]
label_ids_batch = label_ids[i*batch_size: (i+1)*batch_size]
mask_ids_batch = mask_ids[i*batch_size: (i+1)*batch_size, :]
pos_ids_batch = pos_ids[i*batch_size: (i+1)*batch_size, :]
vms_batch = vms[i*batch_size: (i+1)*batch_size]
yield input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vms_batch
if instances_num > instances_num // batch_size * batch_size:
input_ids_batch = input_ids[instances_num//batch_size*batch_size:, :]
label_ids_batch = label_ids[instances_num//batch_size*batch_size:]
mask_ids_batch = mask_ids[instances_num//batch_size*batch_size:, :]
pos_ids_batch = pos_ids[instances_num//batch_size*batch_size:, :]
vms_batch = vms[instances_num//batch_size*batch_size:]
yield input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vms_batch
# Build knowledge graph.
if args.kg_name == 'none':
spo_files = []
else:
spo_files = eval(args.kg_name)
kg = KnowledgeGraph(spo_files=spo_files, predicate=True)
def read_dataset(path, workers_num=1):
print("Loading sentences from {}".format(path))
sentences = []
with open(path, mode='r', encoding="utf-8") as f:
for line_id, line in enumerate(f):
if line_id == 0:
continue
sentences.append(line)
sentence_num = len(sentences)
print("There are {} sentence in total. We use {} processes to inject knowledge into sentences.".format(sentence_num, workers_num))
if workers_num > 1:
params = []
sentence_per_block = int(sentence_num / workers_num) + 1
for i in range(workers_num):
params.append((i, sentences[i*sentence_per_block: (i+1)*sentence_per_block], columns, kg, vocab, args))
pool = Pool(workers_num)
res = pool.map(add_knowledge_worker, params)
pool.close()
pool.join()
dataset = [sample for block in res for sample in block]
else:
params = (0, sentences, columns, kg, vocab, args)
dataset = add_knowledge_worker(params)
return dataset
# Evaluation function.
def evaluate(args, is_test, metrics='Acc'):
if is_test:
dataset = read_dataset(args.test_path, workers_num=args.workers_num)
else:
dataset = read_dataset(args.dev_path, workers_num=args.workers_num)
input_ids = torch.LongTensor([sample[0] for sample in dataset])
label_ids = torch.LongTensor([sample[1] for sample in dataset])
mask_ids = torch.LongTensor([sample[2] for sample in dataset])
pos_ids = torch.LongTensor([example[3] for example in dataset])
vms = [example[4] for example in dataset]
batch_size = args.batch_size
instances_num = input_ids.size()[0]
if is_test:
print("The number of evaluation instances: ", instances_num)
correct = 0
# Confusion matrix.
confusion = torch.zeros(args.labels_num, args.labels_num, dtype=torch.long)
model.eval()
if not args.mean_reciprocal_rank:
for i, (input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vms_batch) in enumerate(batch_loader(batch_size, input_ids, label_ids, mask_ids, pos_ids, vms)):
# vms_batch = vms_batch.long()
vms_batch = torch.LongTensor(vms_batch)
input_ids_batch = input_ids_batch.to(device)
label_ids_batch = label_ids_batch.to(device)
mask_ids_batch = mask_ids_batch.to(device)
pos_ids_batch = pos_ids_batch.to(device)
vms_batch = vms_batch.to(device)
with torch.no_grad():
try:
loss, logits = model(input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vms_batch)
except:
print(input_ids_batch)
print(input_ids_batch.size())
print(vms_batch)
print(vms_batch.size())
logits = nn.Softmax(dim=1)(logits)
pred = torch.argmax(logits, dim=1)
gold = label_ids_batch
for j in range(pred.size()[0]):
if args.testing:
print(pred[j], gold[j])
confusion[pred[j], gold[j]] += 1
correct += torch.sum(pred == gold).item()
if is_test:
print("Confusion matrix:")
print(confusion)
print("Report precision, recall, and f1:")
for i in range(confusion.size()[0]):
if confusion[i, :].sum().item() == 0:
p = 0
if confusion[:, i].sum().item() == 0:
r = 0
f1 = 0
else:
r = confusion[i, i].item() / confusion[:, i].sum().item()
f1 = 0
elif confusion[:, i].sum().item() == 0:
r = 0
if confusion[i, :].sum().item() == 0:
p = 0
f1 = 0
else:
p = confusion[i, i].item() / confusion[i, :].sum().item()
f1 = 0
else:
p = confusion[i, i].item()/confusion[i, :].sum().item()
r = confusion[i, i].item()/confusion[:, i].sum().item()
if p + r == 0:
f1 = 0
else:
f1 = 2*p*r / (p+r)
if i == 1:
label_1_f1 = f1
print("Label {}: {:.3f}, {:.3f}, {:.3f}".format(i, p, r, f1))
try:
print("Acc. (Correct/Total): {:.4f} ({}/{}) ".format(correct/len(dataset), correct, len(dataset)))
if metrics == 'Acc':
return correct / len(dataset)
elif metrics == 'f1':
return label_1_f1
else:
return correct / len(dataset)
except ZeroDivisionError:
print("Acc. (Correct/Total): 0.0000 (0/{}) ".format(len(dataset)))
if metrics == 'Acc':
return 0.0000
elif metrics == 'f1':
return label_1_f1
else:
return 0.0000
else:
for i, (input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vms_batch) in enumerate(batch_loader(batch_size, input_ids, label_ids, mask_ids, pos_ids, vms)):
vms_batch = torch.LongTensor(vms_batch)
input_ids_batch = input_ids_batch.to(device)
label_ids_batch = label_ids_batch.to(device)
mask_ids_batch = mask_ids_batch.to(device)
pos_ids_batch = pos_ids_batch.to(device)
vms_batch = vms_batch.to(device)
with torch.no_grad():
loss, logits = model(input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vms_batch)
logits = nn.Softmax(dim=1)(logits)
if i == 0:
logits_all = logits
if i >= 1:
logits_all = torch.cat((logits_all, logits), 0)
order = -1
gold = []
for i in range(len(dataset)):
qid = dataset[i][-1]
label = dataset[i][1]
if qid == order:
j += 1
if label == 1:
gold.append((qid, j))
else:
order = qid
j = 0
if label == 1:
gold.append((qid, j))
label_order = []
order = -1
for i in range(len(gold)):
if gold[i][0] == order:
templist.append(gold[i][1])
elif gold[i][0] != order:
order = gold[i][0]
if i > 0:
label_order.append(templist)
templist = []
templist.append(gold[i][1])
label_order.append(templist)
order = -1
score_list = []
for i in range(len(logits_all)):
score = float(logits_all[i][1])
qid=int(dataset[i][-1])
if qid == order:
templist.append(score)
else:
order = qid
if i > 0:
score_list.append(templist)
templist = []
templist.append(score)
score_list.append(templist)
rank = []
pred = []
print(len(score_list))
print(len(label_order))
for i in range(len(score_list)):
if len(label_order[i]) == 1:
if label_order[i][0] < len(score_list[i]):
true_score = score_list[i][label_order[i][0]]
score_list[i].sort(reverse=True)
for j in range(len(score_list[i])):
if score_list[i][j] == true_score:
rank.append(1 / (j + 1))
else:
rank.append(0)
else:
true_rank = len(score_list[i])
for k in range(len(label_order[i])):
if label_order[i][k] < len(score_list[i]):
true_score = score_list[i][label_order[i][k]]
temp = sorted(score_list[i],reverse=True)
for j in range(len(temp)):
if temp[j] == true_score:
if j < true_rank:
true_rank = j
if true_rank < len(score_list[i]):
rank.append(1 / (true_rank + 1))
else:
rank.append(0)
MRR = sum(rank) / len(rank)
print("MRR", MRR)
return MRR
# Training phase.
if not args.testing:
print("Start training.")
trainset = read_dataset(args.train_path, workers_num=args.workers_num)
print("Shuffling dataset")
random.shuffle(trainset)
instances_num = len(trainset)
batch_size = args.batch_size
print("Trans data to tensor.")
print("input_ids")
input_ids = torch.LongTensor([example[0] for example in trainset])
print("label_ids")
label_ids = torch.LongTensor([example[1] for example in trainset])
print("mask_ids")
mask_ids = torch.LongTensor([example[2] for example in trainset])
print("pos_ids")
pos_ids = torch.LongTensor([example[3] for example in trainset])
print("vms")
vms = [example[4] for example in trainset]
train_steps = int(instances_num * args.epochs_num / batch_size) + 1
print("Batch size: ", batch_size)
print("The number of training instances:", instances_num)
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'gamma', 'beta']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.0}
]
optimizer = BertAdam(optimizer_grouped_parameters, lr=args.learning_rate, warmup=args.warmup, t_total=train_steps)
total_loss = 0.
result = 0.0
best_result = 0.0
for epoch in range(1, args.epochs_num+1):
model.train()
for i, (input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vms_batch) in enumerate(batch_loader(batch_size, input_ids, label_ids, mask_ids, pos_ids, vms)):
model.zero_grad()
vms_batch = torch.LongTensor(vms_batch)
input_ids_batch = input_ids_batch.to(device)
label_ids_batch = label_ids_batch.to(device)
mask_ids_batch = mask_ids_batch.to(device)
pos_ids_batch = pos_ids_batch.to(device)
vms_batch = vms_batch.to(device)
loss, _ = model(input_ids_batch, label_ids_batch, mask_ids_batch, pos=pos_ids_batch, vm=vms_batch)
if torch.cuda.device_count() > 1:
loss = torch.mean(loss)
total_loss += loss.item()
if (i + 1) % args.report_steps == 0:
print("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i+1, total_loss / args.report_steps))
sys.stdout.flush()
total_loss = 0.
loss.backward()
optimizer.step()
print("Start evaluation on dev dataset.")
result = evaluate(args, False)
if result > best_result:
best_result = result
save_model(model, args.output_model_path)
else:
continue
print("Start evaluation on test dataset.")
evaluate(args, True)
# Evaluation phase.
print("Final evaluation on the test dataset.")
if torch.cuda.device_count() > 1:
model.module.load_state_dict(torch.load(args.output_model_path))
else:
model.load_state_dict(torch.load(args.output_model_path))
evaluate(args, True)
else:
print("Evaluation on test dataset.")
if torch.cuda.device_count() > 1:
model.module.load_state_dict(torch.load(args.to_test_model))
else:
model.load_state_dict(torch.load(args.to_test_model))
evaluate(args, True)
if __name__ == "__main__":
main()