-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
165 lines (131 loc) · 6.45 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import torch
from torch import nn
from torch import optim
from torchvision import datasets, transforms, models
from collections import OrderedDict
import argparse
import json
gpu_ava = torch.cuda.is_available()
def main():
parser = argparse.ArgumentParser(description = 'Training Image Classifier')
parser.add_argument('data_dir', action = 'store', type = str, default = 'flowers', help = 'Set data directory')
parser.add_argument('--save_dir', type = str, default = 'new_checkpoint.pth', help = 'Set directory to save checkpoints')
parser.add_argument('--arch', type = str, default = 'vgg16', help = 'Choose architecture')
parser.add_argument('--learning_rate', type = float, default = 0.001, help = 'Set learning rate')
parser.add_argument('--hidden_units', type = int, default = 200, help = 'Set number of hidden units')
parser.add_argument('--epochs', type = int, default = 3, help = 'Set number of epochs')
parser.add_argument('--gpu', action = 'store_true', help = 'Use GPU for training if avaliable')
args = parser.parse_args()
train_model(args)
def train_model(args):
data_dir = args.data_dir
train_dir = data_dir + '/train'
valid_dir = data_dir + '/valid'
test_dir = data_dir + '/test'
train_transforms = transforms.Compose([transforms.RandomRotation(30),
transforms.Resize(255),
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
valid_transforms = transforms.Compose([transforms.Resize(255),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
test_transforms = transforms.Compose([transforms.Resize(255),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
image_data = dict()
image_data['train'] = datasets.ImageFolder(train_dir,transform = train_transforms)
image_data['valid'] = datasets.ImageFolder(valid_dir, transform = valid_transforms)
image_data['test'] = datasets.ImageFolder(test_dir, transform = test_transforms)
dataloader = dict()
dataloader['train'] = torch.utils.data.DataLoader(image_data['train'], batch_size=64, shuffle=True)
dataloader['valid'] = torch.utils.data.DataLoader(image_data['valid'], batch_size=32)
dataloader['test'] = torch.utils.data.DataLoader(image_data['test'], batch_size=32)
if args.arch == 'vgg16':
model = models.vgg16(pretrained = True)
featureNum = model.classifier[0].in_features
elif args.arch == 'vgg13':
model = models.vgg13(pretrained = True)
featureNum = model.classifier[0].in_features
elif args.arch == 'densenet121':
model = models.densenet121(pretrained = True)
featureNum = model.classifier.in_features
for param in model.parameters():
param.requires_grad = False
classifier = nn.Sequential(OrderedDict([
('fc1', nn.Linear(featureNum,512)),
('relu1', nn.ReLU()),
('dropout1', nn.Dropout(p = 0.5)),
('fc2',nn.Linear(512,args.hidden_units)),
('relu2', nn.ReLU()),
('dropout2', nn.Dropout(p = 0.5)),
('fc3', nn.Linear(args.hidden_units, 102)),
('output', nn.LogSoftmax(dim=1))
]))
model.classifier = classifier
criterion = nn.NLLLoss()
optimizer = optim.Adam(model.classifier.parameters(), lr=args.learning_rate)
if args.gpu:
if gpu_ava:
model = model.to('cuda')
else:
print('GPU is not avaliable')
epochs = args.epochs
print_every = 40
steps = 0
for e in range(epochs):
running_loss = 0
model.train()
for inputs, labels in dataloader['train']:
steps+=1
if args.gpu and gpu_ava:
inputs, labels = inputs.to('cuda'), labels.to('cuda')
optimizer.zero_grad()
outputs = model.forward(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if steps % print_every == 0:
model.eval()
# Turn off gradients for validation, saves memory and computations
with torch.no_grad():
valid_loss, accuracy = validation(model, dataloader['valid'], criterion, args)
print("Epoch: {}/{}.. ".format(e+1, epochs),
"Training Loss: {:.3f}.. ".format(running_loss/print_every),
"Validation Loss: {:.3f}.. ".format(valid_loss/len(dataloader['valid'])),
"Validation Accuracy: {:.3f}".format(accuracy/len(dataloader['valid'])))
running_loss = 0
model.train()
model.class_to_idx = image_data['train'].class_to_idx
model.epochs = args.epochs
checkpoint = {
'epoch' : model.epochs,
'arch' : args.arch,
'class_to_idx': model.class_to_idx,
'model_state_dic' : model.state_dict(),
'optimizer_state_dic' : optimizer.state_dict(),
'classifier' : model.classifier
}
torch.save(checkpoint, args.save_dir)
print('done')
def validation(model, valid_loader, criterion, args):
valid_loss = 0
accuracy = 0
for images, labels in valid_loader:
if args.gpu and gpu_ava:
images, labels = images.to('cuda'), labels.to('cuda')
output = model.forward(images)
valid_loss += criterion(output, labels).item()
ps = torch.exp(output)
equality = (labels.data == ps.max(dim=1)[1])
accuracy += equality.type(torch.FloatTensor).mean()
return valid_loss, accuracy
if __name__ == '__main__':
main()