-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path9_3.cpp
147 lines (126 loc) · 4.51 KB
/
9_3.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
// LT 和 ET 模式
#include<sys/types.h>
#include<sys/socket.h>
#include<netinet/in.h>
#include<arpa/inet.h>
#include<assert.h>
#include<stdio.h>
#include<unistd.h>
#include<errno.h>
#include<string.h>
#include<fcntl.h>
#include<stdlib.h>
#include<sys/epoll.h>
#include<pthread.h>
#define MAX_EVENT_NUMBER 1024
#define BUFFER_SIZE 10
// 将文件描述符设置为非阻塞的
int setnonblocking(int fd){
int old_option = fcntl(fd, F_GETFL);
int new_option = old_option | O_NONBLOCK;
fcntl(fd, F_SETFL, new_option);
return old_option;
}
// 将文件描述符fd上的EPOLLIN注册到epollfd指示的epoll内核事件表中
// 参数enable_et指定是否对fd启用ET模式
void addfd(int epollfd, int fd, bool enable_et){
epoll_event event;
event.data.fd = fd;
event.events = EPOLLIN;
if(enable_et){ event.events |= EPOLLET; }
epoll_ctl(epollfd, EPOLL_CTL_ADD, fd, &event);
setnonblocking(fd);
}
// LT模式工作流程
void lt(epoll_event* events, int number, int epollfd, int listenfd){
char buf[BUFFER_SIZE];
for(int i=0; i<number; ++i){
int sockfd = events[i].data.fd;
if(sockfd == listenfd){
struct sockaddr_in client_address;
socklen_t client_addrlength = sizeof(client_address);
int connfd = accept(listenfd, (struct sockaddr*)&client_address, &client_addrlength);
addfd(epollfd, connfd, false); // 对connfd禁用ET模式
}
else if(events[i].events & EPOLLIN){
// 只要socket读缓存中还有未读出的数据,这段代码就被触发
printf("event trigger once\n");
memset(buf, '\0', BUFFER_SIZE);
int ret = recv(sockfd, buf, BUFFER_SIZE-1, 0);
if(ret <= 0){ close(sockfd); continue; }
printf("get %d bytes of content: %s\n", ret, buf);
}
else{
printf("something else happened\n");
}
}
}
// ET模式工作流程
void et(epoll_event* events, int number, int epollfd, int listenfd){
char buf[BUFFER_SIZE];
for(int i=0; i<number; ++i){
int sockfd = events[i].data.fd;
if(sockfd == listenfd){
struct sockaddr_in client_address;
socklen_t client_addrlength = sizeof(client_address);
int connfd = accept(listenfd, (struct sockaddr*)&client_address, &client_addrlength);
addfd(epollfd, connfd, true);
}
else if(events[i].events & EPOLLIN){
// 这段代码不会被重复触发,所以我们循环读取数据,以确保把socket读缓存中的所有数据读出
printf("event trigger once\n");
while(1){
memset(buf, '\0', BUFFER_SIZE);
int ret = recv(sockfd, buf, BUFFER_SIZE - 1, 0);
if(ret < 0){
// 对于非阻塞IO,下面的条件成立表示数据已经全部读取完毕
// 此后epoll就能再次触发sockfd上的EPOLLIN事件,以驱动下一次读操作
if((errno == EAGAIN) || (errno == EWOULDBLOCK)){
printf("read later\n");
break;
}
close(sockfd);
break;
}
else if(ret == 0){ close(sockfd); }
else{ printf("get %d bytes of content: %s\n", ret, buf); }
}
}
else{ printf("something else happened\n"); }
}
}
int main(int argc, char* argv[]){
if(argc <= 2){
printf("usage: %s IP PORT\n", basename(argv[0]));
return 1;
}
const char* ip = argv[1];
int port = atoi(argv[2]);
int ret = 0;
struct sockaddr_in address;
bzero(&address, sizeof(address));
address.sin_family = AF_INET;
inet_pton(AF_INET, ip, &address.sin_addr);
address.sin_port = htons(port);
int listenfd = socket(PF_INET, SOCK_STREAM, 0);
assert(listenfd >= 0);
ret = bind(listenfd, (struct sockaddr*)&address, sizeof(address));
assert(ret != -1);
ret = listen(listenfd, 5);
assert(ret != -1);
epoll_event events[MAX_EVENT_NUMBER];
int epollfd = epoll_create(5);
assert(epollfd != -1);
addfd(epollfd, listenfd, true);
while(1){
int ret = epoll_wait(epollfd, events, MAX_EVENT_NUMBER, -1);
if(ret < 0){
printf("epoll failure\n");
break;
}
lt(events, ret, epollfd, listenfd); // 使用LT模式
// et(events, ret, epollfd, listenfd); // 使用ET模式
}
close(listenfd);
return 0;
}